Efficient Auto-Labeling of Large-Scale Poultry Datasets (ALPD) Using Semi-Supervised Models, Active Learning, and Prompt-then-Detect Approach
- URL: http://arxiv.org/abs/2501.10809v1
- Date: Sat, 18 Jan 2025 16:20:04 GMT
- Title: Efficient Auto-Labeling of Large-Scale Poultry Datasets (ALPD) Using Semi-Supervised Models, Active Learning, and Prompt-then-Detect Approach
- Authors: Ramesh Bahadur Bist, Lilong Chai, Shawna Weimer, Hannah Atungulua, Chantel Pennicott, Xiao Yang, Sachin Subedi, Chaitanya Pallerla, Yang Tian, Dongyi Wang,
- Abstract summary: The rapid growth of AI in poultry farming has highlighted the challenge of efficiently labeling large, diverse datasets.
This study explores semi-supervised auto-labeling methods, integrating active learning, and prompt-then-detect paradigm.
- Score: 4.6951658997946755
- License:
- Abstract: The rapid growth of AI in poultry farming has highlighted the challenge of efficiently labeling large, diverse datasets. Manual annotation is time-consuming, making it impractical for modern systems that continuously generate data. This study explores semi-supervised auto-labeling methods, integrating active learning, and prompt-then-detect paradigm to develop an efficient framework for auto-labeling of large poultry datasets aimed at advancing AI-driven behavior and health monitoring. Viideo data were collected from broilers and laying hens housed at the University of Arkansas and the University of Georgia. The collected videos were converted into images, pre-processed, augmented, and labeled. Various machine learning models, including zero-shot models like Grounding DINO, YOLO-World, and CLIP, and supervised models like YOLO and Faster-RCNN, were utilized for broilers, hens, and behavior detection. The results showed that YOLOv8s-World and YOLOv9s performed better when compared performance metrics for broiler and hen detection under supervised learning, while among the semi-supervised model, YOLOv8s-ALPD achieved the highest precision (96.1%) and recall (99.0%) with an RMSE of 1.9. The hybrid YOLO-World model, incorporating the optimal YOLOv8s backbone, demonstrated the highest overall performance. It achieved a precision of 99.2%, recall of 99.4%, and an F1 score of 98.7% for breed detection, alongside a precision of 88.4%, recall of 83.1%, and an F1 score of 84.5% for individual behavior detection. Additionally, semi-supervised models showed significant improvements in behavior detection, achieving up to 31% improvement in precision and 16% in F1-score. The semi-supervised models with minimal active learning reduced annotation time by over 80% compared to full manual labeling. Moreover, integrating zero-shot models enhanced detection and behavior identification.
Related papers
- Enhancing Grammatical Error Detection using BERT with Cleaned Lang-8 Dataset [0.0]
This paper presents an improved LLM based model for Grammatical Error Detection (GED)
Traditional approach to GED involved hand-designed features, but recently, Neural Networks (NN) have automated the discovery of these features.
BERT-base-uncased model gave an impressive performance with an F1 score of 0.91 and accuracy of 98.49% on training data.
arXiv Detail & Related papers (2024-11-23T10:57:41Z) - Transfer Learning for Wildlife Classification: Evaluating YOLOv8 against DenseNet, ResNet, and VGGNet on a Custom Dataset [0.0]
The study utilizes transfer learning to fine-tune pre-trained models on the dataset.
YOLOv8 outperforms other models, achieving a training accuracy of 97.39% and a validation F1-score of 96.50%.
arXiv Detail & Related papers (2024-07-10T15:03:00Z) - DigiRL: Training In-The-Wild Device-Control Agents with Autonomous Reinforcement Learning [61.10299147201369]
This paper introduces a novel autonomous RL approach, called DigiRL, for training in-the-wild device control agents.
We build a scalable and parallelizable Android learning environment equipped with a VLM-based evaluator.
We demonstrate the effectiveness of DigiRL using the Android-in-the-Wild dataset, where our 1.3B VLM trained with RL achieves a 49.5% absolute improvement.
arXiv Detail & Related papers (2024-06-14T17:49:55Z) - Incremental Self-training for Semi-supervised Learning [56.57057576885672]
IST is simple yet effective and fits existing self-training-based semi-supervised learning methods.
We verify the proposed IST on five datasets and two types of backbone, effectively improving the recognition accuracy and learning speed.
arXiv Detail & Related papers (2024-04-14T05:02:00Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - To be Critical: Self-Calibrated Weakly Supervised Learning for Salient
Object Detection [95.21700830273221]
Weakly-supervised salient object detection (WSOD) aims to develop saliency models using image-level annotations.
We propose a self-calibrated training strategy by explicitly establishing a mutual calibration loop between pseudo labels and network predictions.
We prove that even a much smaller dataset with well-matched annotations can facilitate models to achieve better performance as well as generalizability.
arXiv Detail & Related papers (2021-09-04T02:45:22Z) - RLAD: Time Series Anomaly Detection through Reinforcement Learning and
Active Learning [17.089402177923297]
We introduce a new semi-supervised, time series anomaly detection algorithm.
It uses deep reinforcement learning and active learning to efficiently learn and adapt to anomalies in real-world time series data.
It requires no manual tuning of parameters and outperforms all state-of-art methods we compare with.
arXiv Detail & Related papers (2021-03-31T15:21:15Z) - DeBERTa: Decoding-enhanced BERT with Disentangled Attention [119.77305080520718]
We propose a new model architecture DeBERTa that improves the BERT and RoBERTa models using two novel techniques.
We show that these techniques significantly improve the efficiency of model pre-training and the performance of both natural language understanding (NLU) and natural langauge generation (NLG) downstream tasks.
arXiv Detail & Related papers (2020-06-05T19:54:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.