論文の概要: Unfolding Tensors to Identify the Graph in Discrete Latent Bipartite Graphical Models
- arxiv url: http://arxiv.org/abs/2501.10897v1
- Date: Sat, 18 Jan 2025 23:08:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:19:40.154650
- Title: Unfolding Tensors to Identify the Graph in Discrete Latent Bipartite Graphical Models
- Title(参考訳): 離散二部グラフモデルにおけるグラフの同定のための展開テンソル
- Authors: Yuqi Gu,
- Abstract要約: 我々はテンソル展開法を用いて、離散二部グラフモデルに対する新しい識別可能性の結果を証明する。
この結果は、これらのモデルの科学的分野や解釈可能な機械学習における信頼できる応用に有用である。
- 参考スコア(独自算出の注目度): 1.7132914341329848
- License:
- Abstract: We use a tensor unfolding technique to prove a new identifiability result for discrete bipartite graphical models, which have a bipartite graph between an observed and a latent layer. This model family includes popular models such as Noisy-Or Bayesian networks for medical diagnosis and Restricted Boltzmann Machines in machine learning. These models are also building blocks for deep generative models. Our result on identifying the graph structure enjoys the following nice properties. First, our identifiability proof is constructive, in which we innovatively unfold the population tensor under the model into matrices and inspect the rank properties of the resulting matrices to uncover the graph. This proof itself gives a population-level structure learning algorithm that outputs both the number of latent variables and the bipartite graph. Second, we allow various forms of nonlinear dependence among the variables, unlike many continuous latent variable graphical models that rely on linearity to show identifiability. Third, our identifiability condition is interpretable, only requiring each latent variable to connect to at least two "pure" observed variables in the bipartite graph. The new result not only brings novel advances in algebraic statistics, but also has useful implications for these models' trustworthy applications in scientific disciplines and interpretable machine learning.
- Abstract(参考訳): 我々はテンソル展開法を用いて、観測層と潜伏層の間の二部グラフを持つ離散二部グラフモデルに対する新しい識別可能性の証明を行う。
このモデルファミリーは、医学診断のためのNoisy-Or Bayesian Networkや機械学習における制限付きボルツマンマシンなどの一般的なモデルを含んでいる。
これらのモデルは、深層生成モデルのためのブロックも作っている。
グラフ構造を特定することは、以下の良い性質を享受する。
まず、我々の識別可能性証明は構成的であり、このモデルの下で人口テンソルを革新的に行列に展開し、結果の行列の階数特性を調べてグラフを明らかにする。
この証明自体は、潜在変数の数と二部グラフの両方を出力する集団レベルの構造学習アルゴリズムを与える。
第二に、線形性に依存する連続潜伏変数グラフィカルモデルとは異なり、変数間の様々な非線型依存を許容する。
第三に、我々の識別可能性条件は解釈可能であり、各潜伏変数は二部グラフ内の少なくとも2つの「純粋な」観測変数に接続する必要がある。
新しい結果は、代数統計学の新たな進歩をもたらすだけでなく、これらのモデルの科学的分野や解釈可能な機械学習における信頼できる応用にも有用である。
関連論文リスト
- Graph-Dictionary Signal Model for Sparse Representations of Multivariate Data [49.77103348208835]
グラフの有限集合がラプラシアンの重み付き和を通してデータ分布の関係を特徴付けるグラフ辞書信号モデルを定義する。
本稿では,観測データからグラフ辞書表現を推論するフレームワークを提案する。
我々は,脳活動データに基づく運動画像復号作業におけるグラフ辞書表現を利用して,従来の手法よりも想像的な動きをよりよく分類する。
論文 参考訳(メタデータ) (2024-11-08T17:40:43Z) - Creating generalizable downstream graph models with random projections [22.690120515637854]
本稿では,グラフ全体にわたってモデルを一般化するグラフ表現学習手法について検討する。
遷移行列の複数のパワーを推定するためにランダムな射影を用いることで、同型不変な特徴の集合を構築することができることを示す。
結果として得られる特徴は、ノードの局所的近傍に関する十分な情報を回復するために使用することができ、他のアプローチと競合する推論を可能にする。
論文 参考訳(メタデータ) (2023-02-17T14:27:00Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
コントラスト学習は、監督の有無にかかわらず、表現を学習するための第一の方法として現れてきた。
近年の研究では、グラフ表現学習における事前学習の有用性が示されている。
本稿では,グラフの対照的な目的に対する拡張を構築する際に,候補のバンクを提供するためのグラフ変換操作を提案する。
論文 参考訳(メタデータ) (2023-02-06T16:26:29Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
離散性に基づく自己監督型LeArning(D-SLA)と呼ばれる原図と摂動グラフの正確な相違を学習することを目的としたフレームワークを提案する。
本稿では,分子特性予測,タンパク質機能予測,リンク予測タスクなど,グラフ関連下流タスクにおける本手法の有効性を検証する。
論文 参考訳(メタデータ) (2022-02-07T08:04:59Z) - An Interpretable Graph Generative Model with Heterophily [38.59200985962146]
ヘテロフィリーを捉えるのに十分な表現性を持つ最初のエッジ非依存グラフ生成モデルを提案する。
我々の実験は、様々な重要なアプリケーションタスクに対して、我々のモデルの有効性を実証する。
論文 参考訳(メタデータ) (2021-11-04T17:34:39Z) - Learnable Graph-regularization for Matrix Decomposition [5.9394103049943485]
本稿では,行列分解のための学習可能なグラフ正規化モデルを提案する。
グラフ正規化法と確率行列分解モデルの間のブリッジを構築する。
スパース精度行列推定により、2つのグラフィカル構造をリアルタイムで反復的に学習する。
論文 参考訳(メタデータ) (2020-10-16T17:12:39Z) - Permutation Invariant Graph Generation via Score-Based Generative
Modeling [114.12935776726606]
本稿では,最近のスコアベース生成モデルを用いて,グラフモデリングにおける置換不変手法を提案する。
特に、入力グラフにおけるデータ分布の勾配をモデル化するために、置換同変のマルチチャネルグラフニューラルネットワークを設計する。
グラフ生成では、我々の学習アプローチはベンチマークデータセット上の既存のモデルよりも良い、あるいは同等の結果を得る。
論文 参考訳(メタデータ) (2020-03-02T03:06:14Z) - The Power of Graph Convolutional Networks to Distinguish Random Graph
Models: Short Version [27.544219236164764]
グラフ畳み込みネットワーク(GCN)はグラフ表現学習において広く使われている手法である。
サンプルグラフの埋め込みに基づいて異なるランダムグラフモデルを区別するGCNのパワーについて検討する。
論文 参考訳(メタデータ) (2020-02-13T17:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。