論文の概要: A Regularized Online Newton Method for Stochastic Convex Bandits with Linear Vanishing Noise
- arxiv url: http://arxiv.org/abs/2501.11127v1
- Date: Sun, 19 Jan 2025 17:35:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:24:12.316232
- Title: A Regularized Online Newton Method for Stochastic Convex Bandits with Linear Vanishing Noise
- Title(参考訳): 線形消滅雑音を有する確率凸帯域に対する正規化オンラインニュートン法
- Authors: Jingxin Zhan, Yuchen Xin, Kaicheng Jin, Zhihua Zhang,
- Abstract要約: 本研究では,学習者が凸損失関数の最小値に近づいた動作を選択すると,下ガウス雑音パラメータが線形に減少すると仮定する凸帯域問題について検討する。
我々の RONM は、損失関数が制約集合で二次的に増加するときの時間水平線$n$ において、多元的後悔点に達する。
また,2つの新しいバンドイットモデルについて検討・解析を行った。
- 参考スコア(独自算出の注目度): 18.74680577173648
- License:
- Abstract: We study a stochastic convex bandit problem where the subgaussian noise parameter is assumed to decrease linearly as the learner selects actions closer and closer to the minimizer of the convex loss function. Accordingly, we propose a Regularized Online Newton Method (RONM) for solving the problem, based on the Online Newton Method (ONM) of arXiv:2406.06506. Our RONM reaches a polylogarithmic regret in the time horizon $n$ when the loss function grows quadratically in the constraint set, which recovers the results of arXiv:2402.12042 in linear bandits. Our analyses rely on the growth rate of the precision matrix $\Sigma_t^{-1}$ in ONM and we find that linear growth solves the question exactly. These analyses also help us obtain better convergence rates when the loss function grows faster. We also study and analyze two new bandit models: stochastic convex bandits with noise scaled to a subgaussian parameter function and convex bandits with stochastic multiplicative noise.
- Abstract(参考訳): 本研究では,学習者が凸損失関数の最小値に近づいた動作を選択すると,下ガウス雑音パラメータが線形に減少すると仮定する確率的凸包帯問題について検討する。
そこで本研究では, arXiv:2406.06506 の Online Newton Method (ONM) に基づく正規化オンラインニュートン法 (RONM) を提案する。
我々の RONM は、損失関数が制約集合で二次的に増加するときの時間地平線 $n$ において多元的後悔点に達し、線形帯域におけるarXiv:2402.12042 の結果を回復する。
解析は精度行列 $\Sigma_t^{-1}$ の OnM における成長速度に依存し,線形成長が問題を正確に解いた。
これらの分析は、損失関数がより速く成長するときに、より良い収束率を得るのにも役立ちます。
また,2つの新しいバンドイットモデルについて検討し,確率的凸バンドイットと確率的乗法的雑音を伴う凸バンドイットについて検討した。
関連論文リスト
- Already Moderate Population Sizes Provably Yield Strong Robustness to Noise [53.27802701790209]
2つの進化的アルゴリズムは、OneMaxベンチマークのランタイムを増大させることなく、一定のノイズ確率を許容できることを示す。
この結果は、ノイズのない子孫は親と騒々しい子孫の間に偏りのある均一な交叉と見なすことができるという、新しい証明の議論に基づいている。
論文 参考訳(メタデータ) (2024-04-02T16:35:52Z) - Linear bandits with polylogarithmic minimax regret [8.97780713904412]
本研究では,未知ベクトルに近づいた単位球上での動作を選択すると,サブガウス雑音パラメータが線形に消滅する線形帯域の雑音モデルについて検討する。
我々は,この問題に対するアルゴリズムを導入し,この最小限の後悔のスケーリングを,時間軸で$log3(T)$,時間軸で$T$として示す。
論文 参考訳(メタデータ) (2024-02-19T10:56:47Z) - Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems [56.86067111855056]
構造密度の重み付き雑音によるクリップ最適化問題を考察する。
勾配が有限の順序モーメントを持つとき、$mathcalO(K-(alpha - 1)/alpha)$よりも高速な収束率が得られることを示す。
得られた推定値が無視可能なバイアスと制御可能な分散を持つことを示す。
論文 参考訳(メタデータ) (2023-11-07T17:39:17Z) - High-probability Convergence Bounds for Nonlinear Stochastic Gradient Descent Under Heavy-tailed Noise [59.25598762373543]
重み付き雑音の存在下でのストリーミングデータにおける学習の精度保証について検討した。
解析的に、与えられた問題に対する設定の選択に$ta$を使うことができることを実証する。
論文 参考訳(メタデータ) (2023-10-28T18:53:41Z) - Variance-Dependent Regret Bounds for Linear Bandits and Reinforcement
Learning: Adaptivity and Computational Efficiency [90.40062452292091]
本稿では,不整合雑音を持つ線形帯域に対する計算効率のよい最初のアルゴリズムを提案する。
我々のアルゴリズムは未知のノイズの分散に適応し、$tildeO(d sqrtsum_k = 1K sigma_k2 + d)$ regretを達成する。
また、強化学習において、線形混合マルコフ決定過程(MDP)に対する分散適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-21T00:17:24Z) - Exploration in Linear Bandits with Rich Action Sets and its Implications
for Inference [23.364534479492715]
期待行列の最小固有値は、アルゴリズムの累積後悔が$sqrtn)$であるときに、$Omega(sqrtn)として増加することを示す。
本研究は, 線形帯域におけるEmphmodel selectionとEmphclusteringの2つの実践シナリオに適用する。
論文 参考訳(メタデータ) (2022-07-23T20:25:07Z) - Hessian Averaging in Stochastic Newton Methods Achieves Superlinear
Convergence [69.65563161962245]
ニュートン法を用いて,滑らかで強凸な目的関数を考える。
最適段階において局所収束に遷移する普遍重み付き平均化スキームが存在することを示す。
論文 参考訳(メタデータ) (2022-04-20T07:14:21Z) - Optimal Online Generalized Linear Regression with Stochastic Noise and
Its Application to Heteroscedastic Bandits [88.6139446295537]
一般化線形モデルの設定におけるオンライン一般化線形回帰の問題について検討する。
ラベルノイズに対処するため、古典的追従正規化リーダ(FTRL)アルゴリズムを鋭く解析する。
本稿では,FTRLに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-28T08:25:26Z) - Noise Regularizes Over-parameterized Rank One Matrix Recovery, Provably [42.427869499882206]
階数 1 の行列 $Y*$ by $XXtop$ をパラメータ化します。
次に,2乗損失関数を用いたランダムな摂動勾配降下法により得られた推定値の平均2乗誤差が$O(sigma2/d)$であることを示す。
対照的に、ランダムな摂動を伴わない勾配降下から得られる推定器は、平均2乗誤差が$O(sigma2)$となる。
論文 参考訳(メタデータ) (2022-02-07T21:53:51Z) - Tight Nonparametric Convergence Rates for Stochastic Gradient Descent
under the Noiseless Linear Model [0.0]
このモデルに基づく最小二乗リスクに対する1パス, 固定段差勾配勾配の収束度を解析した。
特殊な場合として、ランダムなサンプリング点における値のノイズのない観測から単位区間上の実関数を推定するオンラインアルゴリズムを解析する。
論文 参考訳(メタデータ) (2020-06-15T08:25:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。