CNN-based TEM image denoising from first principles
- URL: http://arxiv.org/abs/2501.11225v1
- Date: Mon, 20 Jan 2025 02:19:26 GMT
- Title: CNN-based TEM image denoising from first principles
- Authors: Jinwoong Chae, Sungwook Hong, Sungkyu Kim, Sungroh Yoon, Gunn Kim,
- Abstract summary: We generate highly accurate ground truth images using density functional theory calculations.
Each type of noise is then used to train a separate convolutional neural network (CNN) model.
These CNNs are effective in reducing noise, even when applied to images with different noise levels.
- Score: 28.69364413383459
- License:
- Abstract: Transmission electron microscope (TEM) images are often corrupted by noise, hindering their interpretation. To address this issue, we propose a deep learning-based approach using simulated images. Using density functional theory calculations with a set of pseudo-atomic orbital basis sets, we generate highly accurate ground truth images. We introduce four types of noise into these simulations to create realistic training datasets. Each type of noise is then used to train a separate convolutional neural network (CNN) model. Our results show that these CNNs are effective in reducing noise, even when applied to images with different noise levels than those used during training. However, we observe limitations in some cases, particularly in preserving the integrity of circular shapes and avoiding visible artifacts between image patches. To overcome these challenges, we propose alternative training strategies and future research directions. This study provides a valuable framework for training deep learning models for TEM image denoising.
Related papers
- Self-Calibrated Variance-Stabilizing Transformations for Real-World Image Denoising [19.08732222562782]
Supervised deep learning has become the method of choice for image denoising.
We show that, contrary to popular belief, denoising networks specialized in the removal of Gaussian noise can be efficiently leveraged in favor of real-world image denoising.
arXiv Detail & Related papers (2024-07-24T16:23:46Z) - Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
We present a novel approach to enhance the generalization performance of denoising networks.
Our method involves masking random pixels of the input image and reconstructing the missing information during training.
Our approach exhibits better generalization ability than other deep learning models and is directly applicable to real-world scenarios.
arXiv Detail & Related papers (2023-03-23T09:33:44Z) - Decoupled Mixup for Generalized Visual Recognition [71.13734761715472]
We propose a novel "Decoupled-Mixup" method to train CNN models for visual recognition.
Our method decouples each image into discriminative and noise-prone regions, and then heterogeneously combines these regions to train CNN models.
Experiment results show the high generalization performance of our method on testing data that are composed of unseen contexts.
arXiv Detail & Related papers (2022-10-26T15:21:39Z) - Physics-based Noise Modeling for Extreme Low-light Photography [63.65570751728917]
We study the noise statistics in the imaging pipeline of CMOS photosensors.
We formulate a comprehensive noise model that can accurately characterize the real noise structures.
Our noise model can be used to synthesize realistic training data for learning-based low-light denoising algorithms.
arXiv Detail & Related papers (2021-08-04T16:36:29Z) - Adaptive Denoising via GainTuning [17.72738152112575]
Deep convolutional neural networks (CNNs) for image denoising are usually trained on large datasets.
We propose "GainTuning", in which CNN models pre-trained on large datasets are adaptively and selectively adjusted for individual test images.
We show that GainTuning improves state-of-the-art CNNs on standard image-denoising benchmarks, boosting their denoising performance on nearly every image in a held-out test set.
arXiv Detail & Related papers (2021-07-27T13:35:48Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - Deep Denoising For Scientific Discovery: A Case Study In Electron
Microscopy [22.566600256820646]
We propose a simulation-based denoising (SBD) framework, in which CNNs are trained on simulated images.
SBD outperforms existing techniques by a wide margin on a simulated benchmark dataset, as well as on real data.
We release the first publicly available benchmark dataset of TEM images, containing 18,000 examples.
arXiv Detail & Related papers (2020-10-24T19:59:28Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
This paper presents a two-stage scheme by incorporating self-supervised learning and knowledge distillation.
For self-supervised learning, we suggest a dilated blind-spot network (D-BSN) to learn denoising solely from real noisy images.
Experiments show that our unpaired learning method performs favorably on both synthetic noisy images and real-world noisy photographs.
arXiv Detail & Related papers (2020-08-31T16:22:40Z) - Enhancement of a CNN-Based Denoiser Based on Spatial and Spectral
Analysis [23.11994688706024]
We propose a discrete wavelet denoising CNN (WDnCNN) which restores images corrupted by various noise with a single model.
To address this issue, we present a band normalization module (BNM) to normalize the coefficients from different parts of the frequency spectrum.
We evaluate the proposed WDnCNN, and compare it with other state-of-the-art denoisers.
arXiv Detail & Related papers (2020-06-28T05:25:50Z) - Noise2Inverse: Self-supervised deep convolutional denoising for
tomography [0.0]
Noise2Inverse is a deep CNN-based denoising method for linear image reconstruction algorithms.
We develop a theoretical framework which shows that such training indeed obtains a denoising CNN.
On simulated CT datasets, Noise2Inverse demonstrates an improvement in peak signal-to-noise ratio and structural similarity index.
arXiv Detail & Related papers (2020-01-31T12:50:24Z) - Deep Learning on Image Denoising: An overview [92.07378559622889]
We offer a comparative study of deep techniques in image denoising.
We first classify the deep convolutional neural networks (CNNs) for additive white noisy images.
Next, we compare the state-of-the-art methods on public denoising datasets in terms of quantitative and qualitative analysis.
arXiv Detail & Related papers (2019-12-31T05:03:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.