論文の概要: Multivariate Wireless Link Quality Prediction Based on Pre-trained Large Language Models
- arxiv url: http://arxiv.org/abs/2501.11247v1
- Date: Mon, 20 Jan 2025 03:21:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:20:18.199128
- Title: Multivariate Wireless Link Quality Prediction Based on Pre-trained Large Language Models
- Title(参考訳): 事前学習大言語モデルに基づく多変量無線リンク品質予測
- Authors: Zhuangzhuang Yan, Xinyu Gu, Shilong Fan, Zhenyu Liu,
- Abstract要約: GAT-LLMは、大規模言語モデル(LLM)とグラフ注意ネットワーク(GAT)を組み合わせた、新しい多変量無線リンク品質予測モデルである。
GAT-LLMはリンク品質予測の精度と堅牢性を大幅に向上させることを示す。
- 参考スコア(独自算出の注目度): 2.5971582867976934
- License:
- Abstract: Accurate and reliable link quality prediction (LQP) is crucial for optimizing network performance, ensuring communication stability, and enhancing user experience in wireless communications. However, LQP faces significant challenges due to the dynamic and lossy nature of wireless links, which are influenced by interference, multipath effects, fading, and blockage. In this paper, we propose GAT-LLM, a novel multivariate wireless link quality prediction model that combines Large Language Models (LLMs) with Graph Attention Networks (GAT) to enable accurate and reliable multivariate LQP of wireless communications. By framing LQP as a time series prediction task and appropriately preprocessing the input data, we leverage LLMs to improve the accuracy of link quality prediction. To address the limitations of LLMs in multivariate prediction due to typically handling one-dimensional data, we integrate GAT to model interdependencies among multiple variables across different protocol layers, enhancing the model's ability to handle complex dependencies. Experimental results demonstrate that GAT-LLM significantly improves the accuracy and robustness of link quality prediction, particularly in multi-step prediction scenarios.
- Abstract(参考訳): 高精度で信頼性の高いリンク品質予測(LQP)は、ネットワーク性能の最適化、通信安定性の確保、無線通信におけるユーザエクスペリエンスの向上に不可欠である。
しかし、LQPは、干渉、マルチパス効果、フェーディング、ブロックの影響を受け、無線リンクのダイナミックでロッキーな性質のために大きな課題に直面している。
本稿では,Large Language Models (LLM) と Graph Attention Networks (GAT) を組み合わせた新しい多変量無線リンク品質予測モデルであるGAT-LLMを提案する。
時系列予測タスクとしてLQPをフレーミングし、入力データを適切に前処理することにより、LLMを活用してリンク品質予測の精度を向上させる。
一般に1次元データを扱うことによる多変量予測におけるLLMの限界に対処するため、GATを統合し、異なるプロトコル層にわたる複数の変数間の相互依存性をモデル化し、複雑な依存関係を扱うモデルの能力を高める。
実験により, GAT-LLMはリンク品質予測の精度とロバスト性を大幅に向上させることが示された。
関連論文リスト
- Beam Prediction based on Large Language Models [51.45077318268427]
ミリ波(mmWave)通信は次世代無線ネットワークに期待できるが、パス損失は大きい。
長短期記憶(LSTM)のような従来のディープラーニングモデルでは、ビーム追跡精度が向上するが、ロバスト性や一般化が不足している。
本稿では,大規模言語モデル(LLM)を用いて,ビーム予測の堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-08-16T12:40:01Z) - Csi-LLM: A Novel Downlink Channel Prediction Method Aligned with LLM Pre-Training [3.2721332912474668]
大規模言語モデル(LLM)は、複雑な配列に対して強力なパターン認識と推論能力を示す。
可変ステップ履歴列をモデル化するLLMを用いたダウンリンクチャネル予測技術であるCsi-LLMを紹介する。
そこで我々は,Csi-LLMの設計と訓練を自然言語タスクの処理と整合させる。
論文 参考訳(メタデータ) (2024-08-15T11:39:23Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split Federated Learning (SFL)は、分散機械学習(ML)における計算効率のパラダイムである。
SFLの課題は、特に無線チャネル上に展開する場合、送信されたモデルパラメータが相手のジャミングに感受性を持つことである。
これは、言語理解に不可欠である大規模言語モデル(LLM)における単語埋め込みパラメータに対して特に顕著である。
無線ネットワーク上でのLLM(R-SFLLM)を用いたレジリエンスSFLのための物理層フレームワークを開発した。
論文 参考訳(メタデータ) (2024-07-16T12:21:29Z) - MCDFN: Supply Chain Demand Forecasting via an Explainable Multi-Channel Data Fusion Network Model [0.0]
CNN,Long Short-Term Memory Network (LSTM), Gated Recurrent Units (GRU)を統合したハイブリッドアーキテクチャであるMulti-Channel Data Fusion Network (MCDFN)を紹介する。
我々の比較ベンチマークは、MCDFNが他の7つのディープラーニングモデルより優れていることを示している。
本研究は,需要予測手法を進歩させ,MCDFNをサプライチェーンシステムに統合するための実践的ガイドラインを提供する。
論文 参考訳(メタデータ) (2024-05-24T14:30:00Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation
for Pixel-wise Regression [1.4528189330418977]
機械学習における不確実性推定は、予測モデルの信頼性と解釈可能性を高めるための最重要課題である。
画素ワイド回帰タスクに対するMIMO(Multiple-Input Multiple-Output)フレームワークの適応について述べる。
論文 参考訳(メタデータ) (2023-08-14T22:08:28Z) - Multi-fidelity surrogate modeling using long short-term memory networks [0.0]
パラメタライズされた時間依存問題に対する多要素代理モデリングの新しいデータ駆動フレームワークを提案する。
提案した多要素LSTMネットワークは, シングルフィデリティ回帰を著しく向上するだけでなく, フィードフォワードニューラルネットワークに基づくマルチフィデリティモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-08-05T12:05:02Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - Interference Distribution Prediction for Link Adaptation in
Ultra-Reliable Low-Latency Communications [71.0558149440701]
リンク適応(LA)はURLLCを実現するボトルネックの一つと考えられている。
本稿では,ユーザの干渉信号と雑音比の予測に焦点をあて,LAを増強する。
干渉の時間相関を利用することがURLLCの重要な有効性であることを示す。
論文 参考訳(メタデータ) (2020-07-01T07:59:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。