論文の概要: Towards Advancing Code Generation with Large Language Models: A Research Roadmap
- arxiv url: http://arxiv.org/abs/2501.11354v1
- Date: Mon, 20 Jan 2025 09:33:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:26:11.018046
- Title: Towards Advancing Code Generation with Large Language Models: A Research Roadmap
- Title(参考訳): 大規模言語モデルによるコード生成の促進に向けて:研究ロードマップ
- Authors: Haolin Jin, Huaming Chen, Qinghua Lu, Liming Zhu,
- Abstract要約: 本研究の方向性を概観し,本課題に関する既存研究の詳細な分析を行う。
コード生成プロセスを異なるフェーズに分類する6層視覚フレームワークを提案する。
この分野ではさまざまな視点と行動可能なレコメンデーションを提供しています。
- 参考スコア(独自算出の注目度): 11.844897900380944
- License:
- Abstract: Recently, we have witnessed the rapid development of large language models, which have demonstrated excellent capabilities in the downstream task of code generation. However, despite their potential, LLM-based code generation still faces numerous technical and evaluation challenges, particularly when embedded in real-world development. In this paper, we present our vision for current research directions, and provide an in-depth analysis of existing studies on this task. We propose a six-layer vision framework that categorizes code generation process into distinct phases, namely Input Phase, Orchestration Phase, Development Phase, and Validation Phase. Additionally, we outline our vision workflow, which reflects on the currently prevalent frameworks. We systematically analyse the challenges faced by large language models, including those LLM-based agent frameworks, in code generation tasks. With these, we offer various perspectives and actionable recommendations in this area. Our aim is to provide guidelines for improving the reliability, robustness and usability of LLM-based code generation systems. Ultimately, this work seeks to address persistent challenges and to provide practical suggestions for a more pragmatic LLM-based solution for future code generation endeavors.
- Abstract(参考訳): 近年,コード生成の下流タスクにおいて優れた機能を示す大規模言語モデルの開発が急速に進んでいるのを目の当たりにしている。
しかし、LLMベースのコード生成の可能性にもかかわらず、特に現実世界の開発に組み込まれている場合、多くの技術的および評価上の課題に直面している。
本稿では,現在の研究方向性の展望を述べるとともに,この課題に関する既存研究の詳細な分析を行う。
本稿では,コード生成過程を入力フェーズ,オーケストレーションフェーズ,開発フェーズ,検証フェーズという,異なるフェーズに分類する6層視覚フレームワークを提案する。
さらに、現在普及しているフレームワークを反映したビジョンワークフローについても概説しています。
コード生成タスクにおいて、LLMベースのエージェントフレームワークを含む大規模言語モデルで直面する課題を系統的に分析する。
この領域では、さまざまな視点と行動可能なレコメンデーションを提供しています。
本研究の目的は,LLMベースのコード生成システムの信頼性,堅牢性,ユーザビリティを向上させるためのガイドラインを提供することである。
最終的には、この作業は永続的な課題に対処し、将来的なコード生成の取り組みに対して、より実践的なLLMベースのソリューションを提案することを目的としている。
関連論文リスト
- Large Language Models for Code Generation: The Practitioners Perspective [4.946128083535776]
大きな言語モデル(LLM)は、自然言語のプロンプトからソースコードを生成することができるコーディングアシスタントとして登場した。
自然言語のプロンプトに基づいてコードを生成し,実行するための多モデル統合プラットフォームを提案し,開発する。
我々は4大陸11カ国から60人のソフトウェア実践者を対象に,各モデルのユーザビリティ,パフォーマンス,強み,限界を評価する調査を行った。
論文 参考訳(メタデータ) (2025-01-28T14:52:16Z) - Guided Code Generation with LLMs: A Multi-Agent Framework for Complex Code Tasks [1.9198713957364215]
大規模言語モデル(LLM)は、コード生成タスクにおいて顕著な機能を示している。
複雑な、長いコンテキストプログラミングの課題に対処する上で、それらは重大な制限に直面します。
「案内コード生成のための新しいエージェント・フレームワーク」について紹介する。
論文 参考訳(メタデータ) (2025-01-11T19:21:53Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
クロスモーダル推論(CMR)は、より高度な人工知能システムへの進化における重要な能力として、ますます認識されている。
CMRタスクに取り組むためにLLM(Large Language Models)をデプロイする最近のトレンドは、その有効性を高めるためのアプローチの新たな主流となっている。
本調査では,LLMを用いてCMRで適用された現在の方法論を,詳細な3階層分類に分類する。
論文 参考訳(メタデータ) (2024-09-19T02:51:54Z) - A Survey on Evaluating Large Language Models in Code Generation Tasks [30.256255254277914]
本稿では,コード生成タスクにおけるLarge Language Models (LLMs) の性能評価に使用される現在の手法と指標について概説する。
自動ソフトウェア開発の需要が急速に増加し、LLMはコード生成の分野で大きな可能性を示してきた。
論文 参考訳(メタデータ) (2024-08-29T12:56:06Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - A Survey on Large Language Models for Code Generation [9.555952109820392]
大規模言語モデル(LLM)は、様々なコード関連のタスクで顕著な進歩を遂げています。
本調査は、総合的かつ最新の文献レビューを提供することで、学界と実践的発展のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T17:48:15Z) - A Survey of Neural Code Intelligence: Paradigms, Advances and Beyond [84.95530356322621]
この調査は、コードインテリジェンスの発展に関する体系的なレビューを示す。
50以上の代表モデルとその変種、20以上のタスクのカテゴリ、および680以上の関連する広範な研究をカバーしている。
発達軌道の考察に基づいて、コードインテリジェンスとより広範なマシンインテリジェンスとの間の新たな相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-21T08:54:56Z) - Prompting Large Language Models to Tackle the Full Software Development Lifecycle: A Case Study [72.24266814625685]
DevEvalでソフトウェア開発ライフサイクル全体にわたって、大きな言語モデル(LLM)のパフォーマンスを調査します。
DevEvalは4つのプログラミング言語、複数のドメイン、高品質なデータ収集、各タスクに対して慎重に設計および検証されたメトリクスを備えている。
GPT-4を含む現在のLLMは、DevEvalで提示される課題を解決できないことが実証研究によって示されている。
論文 参考訳(メタデータ) (2024-03-13T15:13:44Z) - Can ChatGPT Support Developers? An Empirical Evaluation of Large Language Models for Code Generation [2.93322471069531]
開発者によるChatGPTとの会話から収集したデータセットであるDevGPTにおける会話の実証分析を行った。
この結果から,LLM生成コードを使用する現在の実践は,高レベルな概念を示すか,ドキュメントに例を示すかのどちらかに制限されていることが示唆された。
論文 参考訳(メタデータ) (2024-02-18T20:48:09Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
大規模言語モデル(LLM)は、最近自然言語処理タスクにおいて顕著な機能を示した。
本稿では, LLM関連概念の幅広い範囲について, 既存の文献について概説する。
論文 参考訳(メタデータ) (2023-07-12T20:01:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。