A Survey on Diffusion Models for Anomaly Detection
- URL: http://arxiv.org/abs/2501.11430v4
- Date: Sun, 16 Feb 2025 22:35:44 GMT
- Title: A Survey on Diffusion Models for Anomaly Detection
- Authors: Jing Liu, Zhenchao Ma, Zepu Wang, Chenxuanyin Zou, Jiayang Ren, Zehua Wang, Liang Song, Bo Hu, Yang Liu, Victor C. M. Leung,
- Abstract summary: Diffusion models (DMs) have emerged as a powerful class of generative AI models.
DMAD offers promising solutions for identifying deviations in increasingly complex and high-dimensional data.
- Score: 41.22298168457618
- License:
- Abstract: Diffusion models (DMs) have emerged as a powerful class of generative AI models, showing remarkable potential in anomaly detection (AD) tasks across various domains, such as cybersecurity, fraud detection, healthcare, and manufacturing. The intersection of these two fields, termed diffusion models for anomaly detection (DMAD), offers promising solutions for identifying deviations in increasingly complex and high-dimensional data. In this survey, we review recent advances in DMAD research. We begin by presenting the fundamental concepts of AD and DMs, followed by a comprehensive analysis of classic DM architectures including DDPMs, DDIMs, and Score SDEs. We further categorize existing DMAD methods into reconstruction-based, density-based, and hybrid approaches, providing detailed examinations of their methodological innovations. We also explore the diverse tasks across different data modalities, encompassing image, time series, video, and multimodal data analysis. Furthermore, we discuss critical challenges and emerging research directions, including computational efficiency, model interpretability, robustness enhancement, edge-cloud collaboration, and integration with large language models. The collection of DMAD research papers and resources is available at https://github.com/fdjingliu/DMAD.
Related papers
- RADAR: Robust Two-stage Modality-incomplete Industrial Anomaly Detection [61.71770293720491]
We propose a novel two-stage Robust modAlity-imcomplete fusing and Detecting frAmewoRk, abbreviated as RADAR.
Our bootstrapping philosophy is to enhance two stages in MIIAD, improving the robustness of the Multimodal Transformer.
Our experimental results demonstrate that the proposed RADAR significantly surpasses conventional MIAD methods in terms of effectiveness and robustness.
arXiv Detail & Related papers (2024-10-02T16:47:55Z) - Advancing Additive Manufacturing through Deep Learning: A Comprehensive Review of Current Progress and Future Challenges [5.048134681658527]
This paper presents the first comprehensive literature review of deep learning (DL) applications in additive manufacturing (AM)
It addresses the need for a thorough analysis in this rapidly growing yet scattered field, aiming to bring together existing knowledge and encourage further development.
arXiv Detail & Related papers (2024-03-01T17:01:47Z) - Unsupervised Pathology Detection: A Deep Dive Into the State of the Art [6.667150890634173]
We evaluate a selection of cutting-edge Unsupervised Anomaly Detection (UAD) methods on multiple medical datasets.
Our experiments demonstrate that newly developed feature-modeling methods from the industrial and medical literature achieve increased performance.
We show that such methods are capable of benefiting from recently developed self-supervised pre-training algorithms.
arXiv Detail & Related papers (2023-03-01T16:03:25Z) - Self-Supervised Anomaly Detection in Computer Vision and Beyond: A
Survey and Outlook [9.85256783464329]
Anomaly detection plays a crucial role in various domains, including cybersecurity, finance, and healthcare.
In recent years, significant progress has been made in this field due to the remarkable growth of deep learning models.
The advent of self-supervised learning has sparked the development of novel AD algorithms that outperform the existing state-of-the-art approaches.
arXiv Detail & Related papers (2022-05-10T21:16:14Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Multimodal Representations Learning and Adversarial Hypergraph Fusion
for Early Alzheimer's Disease Prediction [30.99183477161096]
We propose a novel representation learning and adversarial hypergraph fusion framework for Alzheimer's disease diagnosis.
Our model achieves superior performance on Alzheimer's disease detection compared with other related models.
arXiv Detail & Related papers (2021-07-21T08:08:05Z) - Manifold Topology Divergence: a Framework for Comparing Data Manifolds [109.0784952256104]
We develop a framework for comparing data manifold, aimed at the evaluation of deep generative models.
Based on the Cross-Barcode, we introduce the Manifold Topology Divergence score (MTop-Divergence)
We demonstrate that the MTop-Divergence accurately detects various degrees of mode-dropping, intra-mode collapse, mode invention, and image disturbance.
arXiv Detail & Related papers (2021-06-08T00:30:43Z) - A Comprehensive Study on Temporal Modeling for Online Action Detection [50.558313106389335]
Online action detection (OAD) is a practical yet challenging task, which has attracted increasing attention in recent years.
This paper aims to provide a comprehensive study on temporal modeling for OAD including four meta types of temporal modeling methods.
We present several hybrid temporal modeling methods, which outperform the recent state-of-the-art methods with sizable margins on THUMOS-14 and TVSeries.
arXiv Detail & Related papers (2020-01-21T13:12:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.