A baseline for machine-learning-based hepatocellular carcinoma diagnosis using multi-modal clinical data
- URL: http://arxiv.org/abs/2501.11535v1
- Date: Mon, 20 Jan 2025 15:21:16 GMT
- Title: A baseline for machine-learning-based hepatocellular carcinoma diagnosis using multi-modal clinical data
- Authors: Binwu Wang, Isaac Rodriguez, Leon Breitinger, Fabian Tollens, Timo Itzel, Dennis Grimm, Andrei Sirazitdinov, Matthias Frölich, Stefan Schönberg, Andreas Teufel, Jürgen Hesser, Wenzhao Zhao,
- Abstract summary: The objective of this paper is to provide a baseline for performing multi-modal data classification on a novel open multimodal dataset of carcinoma (HCC)
An XGBoost classifier predicts the TNM staging and it shows a prediction accuracy of $0.89 pm 0.05$.
- Score: 1.6626768902386855
- License:
- Abstract: The objective of this paper is to provide a baseline for performing multi-modal data classification on a novel open multimodal dataset of hepatocellular carcinoma (HCC), which includes both image data (contrast-enhanced CT and MRI images) and tabular data (the clinical laboratory test data as well as case report forms). TNM staging is the classification task. Features from the vectorized preprocessed tabular data and radiomics features from contrast-enhanced CT and MRI images are collected. Feature selection is performed based on mutual information. An XGBoost classifier predicts the TNM staging and it shows a prediction accuracy of $0.89 \pm 0.05$ and an AUC of $0.93 \pm 0.03$. The classifier shows that this high level of prediction accuracy can only be obtained by combining image and clinical laboratory data and therefore is a good example case where multi-model classification is mandatory to achieve accurate results.
Related papers
- Evaluation of Vision Transformers for Multimodal Image Classification: A Case Study on Brain, Lung, and Kidney Tumors [0.0]
This work evaluates the performance of Vision Transformers architectures, including Swin Transformer and MaxViT, in several datasets.
We used three training sets of images with brain, lung, and kidney tumors.
Swin Transformer provided high accuracy, achieving up to 99.9% for kidney tumor classification and 99.3% accuracy in a combined dataset.
arXiv Detail & Related papers (2025-02-08T10:35:51Z) - FUSECAPS: Investigating Feature Fusion Based Framework for Capsule Endoscopy Image Classification [0.0]
This work offers a strong methodology for classifying endoscopic images.
We suggest a hybrid feature extraction method that combines convolutional neural networks (CNNs), multi-layer perceptrons (MLPs), and radiomics.
We have achieved a validation accuracy of 76.2% in the capsule endoscopy video frame classification task.
arXiv Detail & Related papers (2024-11-04T21:55:52Z) - Multi-modal Medical Image Fusion For Non-Small Cell Lung Cancer Classification [7.002657345547741]
Non-small cell lung cancer (NSCLC) is a predominant cause of cancer mortality worldwide.
In this paper, we introduce an innovative integration of multi-modal data, synthesizing fused medical imaging (CT and PET scans) with clinical health records and genomic data.
Our research surpasses existing approaches, as evidenced by a substantial enhancement in NSCLC detection and classification precision.
arXiv Detail & Related papers (2024-09-27T12:59:29Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Graph-Ensemble Learning Model for Multi-label Skin Lesion Classification
using Dermoscopy and Clinical Images [7.159532626507458]
This study introduces a Graph Convolution Network (GCN) to exploit prior co-occurrence between each category as a correlation matrix into the deep learning model for the multi-label classification.
We propose a Graph-Ensemble Learning Model (GELN) that views the prediction from GCN as complementary information of the predictions from the fusion model.
arXiv Detail & Related papers (2023-07-04T13:19:57Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Metastatic Cancer Outcome Prediction with Injective Multiple Instance
Pooling [1.0965065178451103]
We process two public datasets to set up a benchmark cohort of 341 patient in total for studying outcome prediction of metastatic cancer.
We propose two injective multiple instance pooling functions that are better suited to outcome prediction.
Our results show that multiple instance learning with injective pooling functions can achieve state-of-the-art performance in the non-small-cell lung cancer CT and head and neck CT outcome prediction benchmarking tasks.
arXiv Detail & Related papers (2022-03-09T16:58:03Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.