論文の概要: MedicoSAM: Towards foundation models for medical image segmentation
- arxiv url: http://arxiv.org/abs/2501.11734v1
- Date: Mon, 20 Jan 2025 20:40:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:20:52.446355
- Title: MedicoSAM: Towards foundation models for medical image segmentation
- Title(参考訳): メディコSAM:医療画像セグメンテーションの基礎モデルを目指して
- Authors: Anwai Archit, Luca Freckmann, Constantin Pape,
- Abstract要約: 大規模で多様なデータセット上の様々な微調整戦略を比較することにより、医療画像のセグメンテーションを改善する方法を示す。
対話型セグメンテーションでは,性能が向上することが確認できた。
私たちのベストモデルであるMedicoSAMはhttps://github.com/computational-cell-analytics/medico-sam.comで公開されています。
- 参考スコア(独自算出の注目度): 2.6579756198224347
- License:
- Abstract: Medical image segmentation is an important analysis task in clinical practice and research. Deep learning has massively advanced the field, but current approaches are mostly based on models trained for a specific task. Training such models or adapting them to a new condition is costly due to the need for (manually) labeled data. The emergence of vision foundation models, especially Segment Anything, offers a path to universal segmentation for medical images, overcoming these issues. Here, we study how to improve Segment Anything for medical images by comparing different finetuning strategies on a large and diverse dataset. We evaluate the finetuned models on a wide range of interactive and (automatic) semantic segmentation tasks. We find that the performance can be clearly improved for interactive segmentation. However, semantic segmentation does not benefit from pretraining on medical images. Our best model, MedicoSAM, is publicly available at https://github.com/computational-cell-analytics/medico-sam. We show that it is compatible with existing tools for data annotation and believe that it will be of great practical value.
- Abstract(参考訳): 医用画像のセグメンテーションは臨床および研究において重要な分析課題である。
ディープラーニングはこの分野を大きく進歩させたが、現在のアプローチは、主に特定のタスクのためにトレーニングされたモデルに基づいている。
このようなモデルをトレーニングしたり、あるいは新しい条件に適応させるには、(手動で)ラベル付きデータを必要とするため、コストがかかる。
視覚基盤モデルの出現、特にSegment Anythingは、医療画像の普遍的なセグメンテーションへの道を提供し、これらの問題を克服している。
本稿では、大規模で多様なデータセット上での様々な微調整戦略を比較し、医療画像のセグメンテーションを改善する方法について検討する。
我々は,対話的かつ(自律的な)セマンティックセグメンテーションタスクにおける微調整モデルの評価を行った。
対話型セグメンテーションでは,性能が向上することが確認できた。
しかし、セマンティックセグメンテーションは、医用画像の事前訓練の恩恵を受けない。
私たちの最高のモデルであるMedicoSAMはhttps://github.com/computational-cell-analytics/medico-sam.comで公開されています。
データアノテーションの既存のツールと互換性があることを示し、非常に実用的な価値があると信じている。
関連論文リスト
- Prompting Segment Anything Model with Domain-Adaptive Prototype for Generalizable Medical Image Segmentation [49.5901368256326]
医用画像のセグメンテーションにおけるセグメンテーションモデル(DAPSAM)の微調整のための新しいドメイン適応型プロンプトフレームワークを提案する。
DAPSAMは,2つの医療画像分割タスクにおいて,異なるモダリティで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-09-19T07:28:33Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
医療画像の文脈では、SAMがそのセグメンテーション予測を生成した後、人間の専門家が特定のテストサンプルのセグメンテーションを修正することは珍しくない。
我々は、オンライン機械学習の利点を活用して、テスト期間中にSegment Anything(SA)を強化する新しいアプローチを導入する。
医用画像におけるSAのセグメンテーション品質を改善することを目的として,オンライン学習のための修正アノテーションを用いた。
論文 参考訳(メタデータ) (2024-06-03T03:16:25Z) - MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation [2.2585213273821716]
本稿では,CLIPモデルとSAMモデルを組み合わせて臨床スキャンのセグメンテーションを生成する新しいフレームワーク MedCLIP-SAM を提案する。
3つの多様なセグメンテーションタスクと医用画像モダリティを広範囲にテストすることにより、提案手法は優れた精度を示した。
論文 参考訳(メタデータ) (2024-03-29T15:59:11Z) - SegVol: Universal and Interactive Volumetric Medical Image Segmentation [25.322437534713163]
本稿では,汎用的,インタラクティブな医用画像セグメンテーションを支援する3D基盤セグメンテーションモデルSegVolを提案する。
トレーニングデータを90Kの未ラベルCTボリュームと6Kのラベル付きCTボリュームにスケールアップすることにより、この基礎モデルは200以上の解剖学的カテゴリのセグメンテーションをサポートする。
22の解剖学的セグメンテーションタスクの実験では、SegVolは19のタスクで競合より優れており、ランナアップメソッドと比較して37.24%改善されている。
論文 参考訳(メタデータ) (2023-11-22T13:27:36Z) - From CNN to Transformer: A Review of Medical Image Segmentation Models [7.3150850275578145]
医用画像セグメンテーションのための深層学習が主流となっている。
本稿では,近年最も代表的な4つの医用画像セグメンテーションモデルについて調査する。
理論的にこれらのモデルの特徴を解析し、2つのベンチマークデータセット上でそれらの性能を定量的に評価する。
論文 参考訳(メタデータ) (2023-08-10T02:48:57Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
Segment Anything Model (SAM)は画像セグメンテーションの分野で最近人気を集めている。
近年の研究では、SAMは医用画像のセグメンテーションにおいて過小評価されている。
ドメイン固有の医療知識をセグメンテーションモデルに組み込んだ医療SAMアダプタ(Med-SA)を提案する。
論文 参考訳(メタデータ) (2023-04-25T07:34:22Z) - UniverSeg: Universal Medical Image Segmentation [16.19510845046103]
そこで,UniverSegを提案する。UniverSegは,未確認の医療セグメンテーションタスクを,追加のトレーニングなしで解決する手法である。
53のオープンアクセス医療セグメンテーションデータセットを22,000以上のスキャンで収集し、標準化しました。
我々はUniverSegが、未確認タスクにおいて、いくつかの関連メソッドを大幅に上回っていることを実証した。
論文 参考訳(メタデータ) (2023-04-12T19:36:46Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
我々は、Mine yOur owN Anatomy (MONA) と呼ばれる、新しい半教師付き2次元医用画像セグメンテーションフレームワークを紹介する。
まず、先行研究では、すべてのピクセルがモデルトレーニングに等しく重要であると論じており、我々はこの1つだけで意味のある解剖学的特徴を定義できないことを経験的に観察している。
第2に,医療画像を解剖学的特徴の集合に分解できるモデルを構築する。
論文 参考訳(メタデータ) (2022-09-27T15:50:31Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Evolution of Image Segmentation using Deep Convolutional Neural Network:
A Survey [0.0]
我々はCNNに基づくセマンティックとインスタンスセグメンテーションの両方の進化を垣間見る。
我々は、最先端のパン光学セグメンテーションモデルを垣間見せた。
論文 参考訳(メタデータ) (2020-01-13T06:07:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。