論文の概要: A generalizable 3D framework and model for self-supervised learning in medical imaging
- arxiv url: http://arxiv.org/abs/2501.11755v1
- Date: Mon, 20 Jan 2025 21:30:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:20:51.895746
- Title: A generalizable 3D framework and model for self-supervised learning in medical imaging
- Title(参考訳): 医用画像における自己教師型学習のための一般化可能な3Dフレームワークとモデル
- Authors: Tony Xu, Sepehr Hosseini, Chris Anderson, Anthony Rinaldi, Rahul G. Krishnan, Anne L. Martel, Maged Goubran,
- Abstract要約: 3次元医用画像のための現在の自己教師付き学習法は、単純なプリテキストの定式化と、オルガンまたはモダリティ固有のデータセットに依存している。
本稿では,3次元データセットに適応した最先端SSL方式である3DINOを,汎用医療画像モデルである3DINO-ViTの事前訓練に利用した。
我々は,多数の医用画像分割と分類タスクに関する広範囲な実験を用いて3DINO-ViTを検証する。
- 参考スコア(独自算出の注目度): 6.113151507044021
- License:
- Abstract: Current self-supervised learning methods for 3D medical imaging rely on simple pretext formulations and organ- or modality-specific datasets, limiting their generalizability and scalability. We present 3DINO, a cutting-edge SSL method adapted to 3D datasets, and use it to pretrain 3DINO-ViT: a general-purpose medical imaging model, on an exceptionally large, multimodal, and multi-organ dataset of ~100,000 3D medical imaging scans from over 10 organs. We validate 3DINO-ViT using extensive experiments on numerous medical imaging segmentation and classification tasks. Our results demonstrate that 3DINO-ViT generalizes across modalities and organs, including out-of-distribution tasks and datasets, outperforming state-of-the-art methods on the majority of evaluation metrics and labeled dataset sizes. Our 3DINO framework and 3DINO-ViT will be made available to enable research on 3D foundation models or further finetuning for a wide range of medical imaging applications.
- Abstract(参考訳): 現在の3次元医用画像の自己教師付き学習法は、単純なプリテキストの定式化と、オルガンやモダリティ特有のデータセットに依存し、その一般化性とスケーラビリティを制限している。
我々は,3Dデータセットに適応した最先端SSL手法である3DINOを,10以上の臓器から約100,000個の3D画像スキャンの異常な大規模・多モード・多臓器データセット上で,汎用的な医用イメージングモデルである3DINO-ViTの事前訓練に使用した。
我々は,多数の医用画像分割と分類タスクに関する広範囲な実験を用いて3DINO-ViTを検証する。
以上の結果から,3DINO-ViTは,分布外のタスクやデータセット,評価指標の多数およびラベル付きデータセットサイズにおいて,最先端の手法よりも優れることを示す。
当社の3DINOフレームワークと3DINO-ViTは,3Dファンデーションモデルの研究や,幅広い医療画像アプリケーションのためのさらなる微調整を可能にするために利用可能である。
関連論文リスト
- E3D-GPT: Enhanced 3D Visual Foundation for Medical Vision-Language Model [23.56751925900571]
3次元医用視覚言語モデルの開発は、疾患の診断と患者の治療に有意な可能性を秘めている。
自己教師付き学習を用いて3次元視覚特徴抽出のための3次元視覚基盤モデルを構築した。
本研究では,3次元空間畳み込みを高精細画像の特徴の集約・投影に応用し,計算複雑性を低減した。
本モデルは,既存の報告生成法,視覚的質問応答法,疾患診断法と比較して,優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-18T06:31:40Z) - 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
本稿では,VQAに基づく医用視覚言語モデルである3D-CT-GPTについて紹介する。
パブリックデータセットとプライベートデータセットの両方の実験により、3D-CT-GPTはレポートの正確さと品質という点で既存の手法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-09-28T12:31:07Z) - SAM3D: Zero-Shot Semi-Automatic Segmentation in 3D Medical Images with the Segment Anything Model [3.2554912675000818]
SAM3Dは,既存のセグメンテーションモデル上に構築された3次元画像の半自動ゼロショットセグメンテーションのための新しいアプローチである。
ユーザが3Dポリラインでプロンプトし、複数の軸に沿ってボリュームスライスし、事前訓練されたモデルでスライスワイド推論を行い、3Dで再構成と洗練を行う4段階の戦略で、3D画像の高速かつ正確なセグメンテーションを実現する。
論文 参考訳(メタデータ) (2024-05-10T19:26:17Z) - M3D: Advancing 3D Medical Image Analysis with Multi-Modal Large Language Models [49.5030774873328]
これまでの研究は主に2Dの医療画像に焦点を合わせてきた。
120K画像テキスト対と62K命令応答対からなる大規模3次元マルチモーダル医療データセットM3D-Dataを提案する。
また,新しい3次元マルチモーダル・メディカル・ベンチマークであるM3D-Benchを導入し,8つのタスクにまたがる自動評価を容易にする。
論文 参考訳(メタデータ) (2024-03-31T06:55:12Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
本稿では,3次元医用画像合成の新しい生成手法であるGEM-3Dを提案する。
本手法は2次元スライスから始まり,3次元スライスマスクを用いて患者に提供するための情報スライスとして機能し,生成過程を伝搬する。
3D医療画像をマスクと患者の事前情報に分解することで、GEM-3Dは多目的な3D画像を生成する柔軟な、かつ効果的なソリューションを提供する。
論文 参考訳(メタデータ) (2024-03-19T15:57:04Z) - 3D-MIR: A Benchmark and Empirical Study on 3D Medical Image Retrieval in
Radiology [6.851500027718433]
3D画像検索の分野はまだ発展途上であり、確立された評価ベンチマーク、包括的なデータセット、徹底的な研究が欠如している。
本稿では,3次元医用画像検索のための新しいベンチマーク(3D-MIR)を提案する。
このベンチマークを用いて,一般的なマルチモーダル基礎モデルの2次元スライス,3次元ボリューム,マルチモーダル埋め込みをクエリとして利用する,多様な検索戦略を探索する。
論文 参考訳(メタデータ) (2023-11-23T00:57:35Z) - SAM-Med3D: Towards General-purpose Segmentation Models for Volumetric Medical Images [35.83393121891959]
ボリューム医療画像の汎用セグメンテーションのためのSAM-Med3Dを提案する。
SAM-Med3Dは様々な解剖学的構造と病変を正確に分類することができる。
提案手法は,医療資源を多用した汎用医療AIの開発に活用できることを実証するものである。
論文 参考訳(メタデータ) (2023-10-23T17:57:36Z) - Towards Generalist Foundation Model for Radiology by Leveraging
Web-scale 2D&3D Medical Data [66.9359934608229]
この研究はRadFMと呼ばれるRadlogy Foundation Modelの開発を開始することを目的としている。
われわれの知る限りでは、これは2Dスキャンと3Dスキャンによる、最初の大規模で高品質な医療用ビジュアル言語データセットである。
本稿では,モダリティ認識,疾患診断,視覚的質問応答,レポート生成,合理的診断の5つのタスクからなる新しい評価ベンチマークRadBenchを提案する。
論文 参考訳(メタデータ) (2023-08-04T17:00:38Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Medical Transformer: Universal Brain Encoder for 3D MRI Analysis [1.6287500717172143]
既存の3Dベースの手法は、トレーニング済みのモデルを下流のタスクに転送している。
彼らは3D医療イメージングのためのモデルを訓練するために大量のパラメータを要求します。
本稿では,2次元画像スライス形式で3次元容積画像を効果的にモデル化する,メディカルトランスフォーマーと呼ばれる新しい伝達学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-28T08:34:21Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
3D胸部CTスキャン分類のための3D DLモデルを自動的に検索するための差別化可能なニューラルネットワーク探索(DNAS)フレームワークを提案する。
また,我々のモデルのクラスアクティベーションマッピング(cam)技術を利用して,結果の解釈可能性を提供する。
論文 参考訳(メタデータ) (2021-01-14T03:45:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。