Fast Underwater Scene Reconstruction using Multi-View Stereo and Physical Imaging
- URL: http://arxiv.org/abs/2501.11884v1
- Date: Tue, 21 Jan 2025 04:35:27 GMT
- Title: Fast Underwater Scene Reconstruction using Multi-View Stereo and Physical Imaging
- Authors: Shuyi Hu, Qi Liu,
- Abstract summary: We propose a novel method that integrates Multi-View Stereo absorption (MVS) with a physics-based underwater image formation model.
By leveraging the medium to estimate the medium parameters and combining this with a color for rendering, we restore the true colors of underwater scenes.
Experimental results show that our method enables high-quality synthesis of novel views in scattering media, clear views restoration by removing the medium, and outperforms existing methods in rendering quality and training efficiency.
- Score: 5.676974245780037
- License:
- Abstract: Underwater scene reconstruction poses a substantial challenge because of the intricate interplay between light and the medium, resulting in scattering and absorption effects that make both depth estimation and rendering more complex. While recent Neural Radiance Fields (NeRF) based methods for underwater scenes achieve high-quality results by modeling and separating the scattering medium, they still suffer from slow training and rendering speeds. To address these limitations, we propose a novel method that integrates Multi-View Stereo (MVS) with a physics-based underwater image formation model. Our approach consists of two branches: one for depth estimation using the traditional cost volume pipeline of MVS, and the other for rendering based on the physics-based image formation model. The depth branch improves scene geometry, while the medium branch determines the scattering parameters to achieve precise scene rendering. Unlike traditional MVSNet methods that rely on ground-truth depth, our method does not necessitate the use of depth truth, thus allowing for expedited training and rendering processes. By leveraging the medium subnet to estimate the medium parameters and combining this with a color MLP for rendering, we restore the true colors of underwater scenes and achieve higher-fidelity geometric representations. Experimental results show that our method enables high-quality synthesis of novel views in scattering media, clear views restoration by removing the medium, and outperforms existing methods in rendering quality and training efficiency.
Related papers
- Matching Free Depth Recovery from Structured Light [28.865683021793625]
We present a novel approach for depth estimation from images captured by structured light systems.
Our approach uses a density voxel grid to represent scene geometry, which is trained via self-supervised differentiable volume rendering.
arXiv Detail & Related papers (2025-01-13T08:03:49Z) - Pixel-Aligned Multi-View Generation with Depth Guided Decoder [86.1813201212539]
We propose a novel method for pixel-level image-to-multi-view generation.
Unlike prior work, we incorporate attention layers across multi-view images in the VAE decoder of a latent video diffusion model.
Our model enables better pixel alignment across multi-view images.
arXiv Detail & Related papers (2024-08-26T04:56:41Z) - A Physical Model-Guided Framework for Underwater Image Enhancement and Depth Estimation [19.204227769408725]
Existing underwater image enhancement approaches fail to accurately estimate imaging model parameters such as depth and veiling light.
We propose a model-guided framework for jointly training a Deep Degradation Model with any advanced UIE model.
Our framework achieves remarkable enhancement results across diverse underwater scenes.
arXiv Detail & Related papers (2024-07-05T03:10:13Z) - FlowDepth: Decoupling Optical Flow for Self-Supervised Monocular Depth Estimation [8.78717459496649]
We propose FlowDepth, where a Dynamic Motion Flow Module (DMFM) decouples the optical flow by a mechanism-based approach and warps the dynamic regions thus solving the mismatch problem.
For the unfairness of photometric errors caused by high-freq and low-texture regions, we use Depth-Cue-Aware Blur (DCABlur) and Cost-Volume sparsity loss respectively at the input and the loss level to solve the problem.
arXiv Detail & Related papers (2024-03-28T10:31:23Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
How to obtain clear and visually pleasant images has become a common concern of people.
The task of underwater image enhancement (UIE) has also emerged as the times require.
In this paper, we propose a physical model-guided GAN model for UIE, referred to as PUGAN.
Our PUGAN outperforms state-of-the-art methods in both qualitative and quantitative metrics.
arXiv Detail & Related papers (2023-06-15T07:41:12Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
TensoIR is a novel inverse rendering approach based on tensor factorization and neural fields.
TensoRF is a state-of-the-art approach for radiance field modeling.
arXiv Detail & Related papers (2023-04-24T21:39:13Z) - Deep Learning Methods for Calibrated Photometric Stereo and Beyond [86.57469194387264]
Photometric stereo recovers the surface normals of an object from multiple images with varying shading cues.
Deep learning methods have shown a powerful ability in the context of photometric stereo against non-Lambertian surfaces.
arXiv Detail & Related papers (2022-12-16T11:27:44Z) - DARF: Depth-Aware Generalizable Neural Radiance Field [51.29437249009986]
We propose the Depth-Aware Generalizable Neural Radiance Field (DARF) with a Depth-Aware Dynamic Sampling (DADS) strategy.
Our framework infers the unseen scenes on both pixel level and geometry level with only a few input images.
Compared with state-of-the-art generalizable NeRF methods, DARF reduces samples by 50%, while improving rendering quality and depth estimation.
arXiv Detail & Related papers (2022-12-05T14:00:59Z) - Underwater Image Enhancement via Medium Transmission-Guided Multi-Color
Space Embedding [88.46682991985907]
We present an underwater image enhancement network via medium transmission-guided multi-color space embedding, called Ucolor.
Our network can effectively improve the visual quality of underwater images by exploiting multiple color spaces embedding.
arXiv Detail & Related papers (2021-04-27T07:35:30Z) - Domain Adaptive Adversarial Learning Based on Physics Model Feedback for
Underwater Image Enhancement [10.143025577499039]
We propose a new robust adversarial learning framework via physics model based feedback control and domain adaptation mechanism for enhancing underwater images.
A new method for simulating underwater-like training dataset from RGB-D data by underwater image formation model is proposed.
Final enhanced results on synthetic and real underwater images demonstrate the superiority of the proposed method.
arXiv Detail & Related papers (2020-02-20T07:50:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.