Field Test of Twin-Field Quantum Key Distribution through
Sending-or-Not-Sending over 428 km
- URL: http://arxiv.org/abs/2101.00276v1
- Date: Fri, 1 Jan 2021 17:35:59 GMT
- Title: Field Test of Twin-Field Quantum Key Distribution through
Sending-or-Not-Sending over 428 km
- Authors: Hui Liu, Cong Jiang, Hao-Tao Zhu, Mi Zou, Zong-Wen Yu, Xiao-Long Hu,
Hai Xu, Shizhao Ma, Zhiyong Han, Jiu-Peng Chen, Yunqi Dai, Shi-Biao Tang,
Weijun Zhang, Hao Li, Lixing You, Zhen Wang, Fei Zhou, Qiang Zhang, Xiang-Bin
Wang, Teng-Yun Chen, and Jian-Wei Pan
- Abstract summary: Twin-field quantum key distribution (TF-QKD) has attracted considerable attention because of its outstanding key rates over long distances.
Here, we demonstrate a field-test QKD over 428km deployed commercial fiber and two users are physically separated by about 300km in a straight line.
We achieve a new distance record for the field test of both TF-QKD and all types of fiber-based QKD systems.
- Score: 15.390492764316264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum key distribution endows people with information-theoretical security
in communications. Twin-field quantum key distribution (TF-QKD) has attracted
considerable attention because of its outstanding key rates over long
distances. Recently, several demonstrations of TF-QKD have been realized.
Nevertheless, those experiments are implemented in the laboratory, remaining a
critical question about whether the TF-QKD is feasible in real-world
circumstances. Here, by adopting the sending-or-not-sending twin-field QKD
(SNS-TF-QKD) with the method of actively odd parity pairing (AOPP), we
demonstrate a field-test QKD over 428~km deployed commercial fiber and two
users are physically separated by about 300~km in a straight line. To this end,
we explicitly measure the relevant properties of the deployed fiber and develop
a carefully designed system with high stability. The secure key rate we
achieved breaks the absolute key rate limit of repeater-less QKD. The result
provides a new distance record for the field test of both TF-QKD and all types
of fiber-based QKD systems. Our work bridges the gap of QKD between laboratory
demonstrations and practical applications, and paves the way for intercity QKD
network with high-speed and measurement-device-independent security.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Metropolitan quantum key distribution using a GaN-based room-temperature telecommunication single-photon source [54.32714639668751]
Single-photon sources (SPS) hold the potential to enhance the performance of quantum key distribution (QKD)
We have successfully demonstrated QKD using a room-temperature SPS at telecommunication wavelength.
arXiv Detail & Related papers (2024-09-27T07:35:51Z) - 1002 km Twin-Field Quantum Key Distribution with Finite-Key Analysis [18.03339414738153]
Quantum key distribution (QKD) holds the potential to establish secure keys over long distances.
We adopt the 3-intensity sending-or-not-sending twin-field QKD protocol with the actively-odd-parity-pairing method.
The secure key rate for the 202 km, the normal distance between major cities, reached 111.74 kbps.
arXiv Detail & Related papers (2023-12-01T15:01:47Z) - Twin-field quantum key distribution with local frequency reference [18.04679036242816]
We propose and demonstrate a simple and practical approach to realize TF-QKD without requiring relative frequency control of the independent laser sources.
We experimentally demonstrate the TF-QKD over 502 km, 301 km and 201 km ultra-low loss optical fiber respectively.
We expect this high-performance scheme will find widespread usage in future intercity and free-space quantum communication networks.
arXiv Detail & Related papers (2023-10-27T17:29:52Z) - Quantum Key Distribution over 100 km underwater optical fiber assisted
by a Fast-Gated Single-Photon Detector [44.07851469168589]
In this work, we implement a quantum key distribution link between Sicily (Italy) and Malta.
The performances of a standard commercial SPAD have been compared with the results achieved with a new prototype of fast-gated System in a Package (SiP) SPAD.
The SiP detector has shown to be able to accomplish a fourteen times higher key rate compared with the commercial device over the channel showing 20 dB of losses.
arXiv Detail & Related papers (2023-03-02T18:07:31Z) - Single-emitter quantum key distribution over 175 km of fiber with
optimised finite key rates [45.82374977939355]
We perform fibre-based quantum key distribution with a quantum dot frequency-converted to telecom wavelength.
We demonstrate positive key rates up to 175 km in the regime.
This result represents major progress towards the feasibility of long-distance single-emitter QKD networks.
arXiv Detail & Related papers (2022-09-07T18:03:36Z) - Simple security proof of coherent-one-way quantum key distribution [10.146265944582552]
Coherent-one-way quantum key distribution (COW-QKD) has the ability to withstand photon-number-splitting attacks.
Recent studies have shown that the current COW-QKD system is insecure and can only distribute secret keys safely within 20 km of the optical fiber length.
We propose a practical implementation of COW-QKD by adding a two-pulse vacuum state as a new decoy sequence.
arXiv Detail & Related papers (2021-07-20T08:40:16Z) - Experiment on scalable multi-user twin-field quantum key distribution
network [2.61793967714497]
We experimentally demonstrate a proof-of-principle multi-user-pair Sagnac TFQKD network where three user pairs share the same measurement station.
It is to our knowledge the first multi-user-pair TFQKD network demonstration, an important step in advancing quantum communication network technologies.
arXiv Detail & Related papers (2021-06-14T21:41:32Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - Path-encoded high-dimensional quantum communication over a 2 km
multicore fiber [50.591267188664666]
We demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states.
A stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.
arXiv Detail & Related papers (2021-03-10T11:02:45Z) - Sending or not sending twin-field quantum key distribution with
distinguishable decoy states [10.66830089114367]
We find the external modulation of different intensity states through the test, required in those TF-QKD with post-phase compensation, shows a side channel in frequency domain.
We propose a complete and undetected eavesdropping attack, named passive frequency shift attack, on sending or not-sending TF-QKD protocol.
Our results emphasize the importance of practical security at source and might provide a valuable reference for the practical implementation of TF-QKD.
arXiv Detail & Related papers (2021-01-27T09:37:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.