論文の概要: Implementation of an Asymmetric Adjusted Activation Function for Class Imbalance Credit Scoring
- arxiv url: http://arxiv.org/abs/2501.12285v1
- Date: Tue, 21 Jan 2025 16:54:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:23:47.603509
- Title: Implementation of an Asymmetric Adjusted Activation Function for Class Imbalance Credit Scoring
- Title(参考訳): クラス不均衡信用スコアリングのための非対称適応活性化関数の実装
- Authors: Xia Li, Hanghang Zheng, Kunpeng Tao, Mao Mao,
- Abstract要約: クレジットスコアリング(Credit score)は、銀行ローンにおける借主のデフォルト(PD)の確率を評価するための体系的なアプローチである。
このようなシナリオに関連するデータは、特徴的に不均衡であり、バイナリ分類が複雑である。
我々は、IR依存の非対称調整因子を組み込んだシグモイド活性化関数を組み込むことにより、革新的かつ単純で最適化されたアクティベーション関数を導入する。
- 参考スコア(独自算出の注目度): 4.032608240950855
- License:
- Abstract: Credit scoring is a systematic approach to evaluate a borrower's probability of default (PD) on a bank loan. The data associated with such scenarios are characteristically imbalanced, complicating binary classification owing to the often-underestimated cost of misclassification during the classifier's learning process. Considering the high imbalance ratio (IR) of these datasets, we introduce an innovative yet straightforward optimized activation function by incorporating an IR-dependent asymmetric adjusted factor embedded Sigmoid activation function (ASIG). The embedding of ASIG makes the sensitive margin of the Sigmoid function auto-adjustable, depending on the imbalance nature of the datasets distributed, thereby giving the activation function an asymmetric characteristic that prevents the underrepresentation of the minority class (positive samples) during the classifier's learning process. The experimental results show that the ASIG-embedded-classifier outperforms traditional classifiers on datasets across wide-ranging IRs in the downstream credit-scoring task. The algorithm also shows robustness and stability, even when the IR is ultra-high. Therefore, the algorithm provides a competitive alternative in the financial industry, especially in credit scoring, possessing the ability to effectively process highly imbalanced distribution data.
- Abstract(参考訳): クレジットスコアリング(Credit score)は、銀行ローンにおける借主のデフォルト(PD)の確率を評価するための体系的なアプローチである。
このようなシナリオに関連するデータは特性的に不均衡であり、分類器の学習過程においてしばしば過小評価される誤分類コストのため、バイナリ分類を複雑化する。
これらのデータセットの高不均衡比(IR)を考慮すると、IR依存非対称調整因子組み込みシグモイド活性化関数(ASIG)を組み込むことにより、革新的かつ単純で最適化された活性化関数を導入する。
ASIGの埋め込みにより、分散されたデータセットの不均衡の性質に応じて、Sigmoid関数のセンシティブなマージンを自動調整可能とし、アクティベーション関数に非対称な特性を与え、分類器の学習過程におけるマイノリティクラス(陽性サンプル)の過小表現を防止する。
実験の結果,ASIG埋め込み型分類器は,下流のクレジットスコーリングタスクにおいて,広い範囲のIRにまたがるデータセットにおいて従来の分類器よりも優れていた。
このアルゴリズムは、IRが極端に高い場合でも、頑丈さと安定性を示す。
したがって、このアルゴリズムは金融業界、特に信用スコアリングにおいて競争力のある代替手段を提供し、高度に不均衡な分散データを効果的に処理する能力を持っている。
関連論文リスト
- Enhancing Imbalance Learning: A Novel Slack-Factor Fuzzy SVM Approach [0.0]
サポートベクターマシン(FSVM)は、様々なファジィメンバシップをサンプルに割り当てることで、クラス不均衡に対処する。
最近開発されたslack-factor-based FSVM(SFFSVM)は、slack Factorを使用して、誤分類可能性に基づいてファジィメンバシップを調整することで、従来のFSVMを改善している。
そこで我々は,新しい位置パラメータを導入する改良されたスラックファクターベースFSVM(ISFFSVM)を提案する。
論文 参考訳(メタデータ) (2024-11-26T05:47:01Z) - Energy Score-based Pseudo-Label Filtering and Adaptive Loss for Imbalanced Semi-supervised SAR target recognition [1.2035771704626825]
既存の半教師付きSAR ATRアルゴリズムは、クラス不均衡の場合、認識精度が低い。
この研究は、動的エネルギースコアと適応損失を用いた非平衡半教師付きSAR目標認識手法を提供する。
論文 参考訳(メタデータ) (2024-11-06T14:45:16Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Graph Embedded Intuitionistic Fuzzy Random Vector Functional Link Neural
Network for Class Imbalance Learning [4.069144210024564]
クラス不均衡学習(GE-IFRVFL-CIL)モデルのためのグラフ埋め込み直観的ファジィRVFLを提案する。
提案したGE-IFRVFL-CILモデルは、クラス不均衡問題に対処し、ノイズとアウトレーヤの有害な効果を軽減し、データセットの固有の幾何学的構造を保存するための有望な解決策を提供する。
論文 参考訳(メタデータ) (2023-07-15T20:45:45Z) - Stabilizing and Improving Federated Learning with Non-IID Data and
Client Dropout [15.569507252445144]
ラベル分布スキューによるデータヘテロジェニーティは、フェデレート学習におけるモデル性能を制限する重要な障害であることが示されている。
クロスエントロピー損失を計算するための事前校正ソフトマックス関数を導入することで、シンプルで効果的なフレームワークを提案する。
非IIDデータとクライアントドロップアウトの存在下で、既存のベースラインよりも優れたモデル性能を示す。
論文 参考訳(メタデータ) (2023-03-11T05:17:59Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - Diversity Enhanced Active Learning with Strictly Proper Scoring Rules [4.81450893955064]
テキスト分類のための能動学習(AL)のための獲得関数について検討する。
我々は、期待損失削減法(ELR)を、ログ確率や負平均二乗誤差などの(厳密な)スコアの増加を推定するために変換する。
BEMPSを用いた平均二乗誤差とログ確率を用いることで、ロバストな取得関数が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T05:02:11Z) - Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer [72.5190560787569]
コンピュータビジョンにおいて、長い尾のデータセットからの学習は、特に自然画像データセットの繰り返しのテーマである。
本稿では,データ生成機構がラベル条件と特徴分布の間で不変であるメタ分散シナリオを提案する。
これにより、因果データインフレーションの手順を利用してマイノリティクラスの表現を拡大できる。
論文 参考訳(メタデータ) (2020-11-25T00:13:11Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z) - Data Augmentation Imbalance For Imbalanced Attribute Classification [60.71438625139922]
本稿では,データ拡張不均衡(DAI)と呼ばれる新しい再サンプリングアルゴリズムを提案する。
我々のDAIアルゴリズムは歩行者属性のデータセットに基づいて最先端の結果を得る。
論文 参考訳(メタデータ) (2020-04-19T20:43:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。