論文の概要: CCESAR: Coastline Classification-Extraction From SAR Images Using CNN-U-Net Combination
- arxiv url: http://arxiv.org/abs/2501.12384v1
- Date: Tue, 21 Jan 2025 18:57:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:23:42.761166
- Title: CCESAR: Coastline Classification-Extraction From SAR Images Using CNN-U-Net Combination
- Title(参考訳): CCESAR:CNN-U-Net組合せを用いたSAR画像からの海岸線分類抽出
- Authors: Vidhu Arora, Shreyan Gupta, Ananthakrishna Kudupu, Aditya Priyadarshi, Aswathi Mundayatt, Jaya Sreevalsan-Nair,
- Abstract要約: 本稿では,画像分類とセグメンテーションを含む2段階モデルを提案する。
その結果、SAR画像(CCESAR)から海岸線分類抽出を行う2段階のワークフローは、単一のU-Netセグメンテーションモデルよりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 1.0445560141983632
- License:
- Abstract: In this article, we improve the deep learning solution for coastline extraction from Synthetic Aperture Radar (SAR) images by proposing a two-stage model involving image classification followed by segmentation. We hypothesize that a single segmentation model usually used for coastline detection is insufficient to characterize different coastline types. We demonstrate that the need for a two-stage workflow prevails through different compression levels of these images. Our results from experiments using a combination of CNN and U-Net models on Sentinel-1 images show that the two-stage workflow, coastline classification-extraction from SAR images (CCESAR) outperforms a single U-Net segmentation model.
- Abstract(参考訳): 本稿では,合成開口レーダ(SAR)画像から海岸線を抽出する深層学習法について,画像分類とセグメンテーションを含む2段階モデルを提案する。
我々は,通常海岸線検出に使用される1つのセグメンテーションモデルが,異なる海岸線タイプを特徴付けるには不十分であると仮定する。
これらの画像の異なる圧縮レベルを通じて、2段階のワークフローが必要であることが実証された。
Sentinel-1画像上のCNNモデルとU-Netモデルの組み合わせによる実験の結果、SAR画像(CCESAR)から海岸線分類抽出を行う2段階のワークフローは、単一のU-Netセグメンテーションモデルより優れていることが示された。
関連論文リスト
- Strong Baseline and Bag of Tricks for COVID-19 Detection of CT Scans [2.696776905220987]
従来のディープラーニングフレームワークは、CT画像のスライス数や解像度の変化によって互換性の問題に直面する。
この制限に対処するために,各CTデータセットに対して新しいスライス選択法を提案する。
上記の方法に加えて、様々な高性能分類モデルについて検討し、最終的には有望な結果を得る。
論文 参考訳(メタデータ) (2023-03-15T09:52:28Z) - A Model-data-driven Network Embedding Multidimensional Features for
Tomographic SAR Imaging [5.489791364472879]
多次元特徴量に基づくトモSARイメージングを実現するためのモデルデータ駆動型ネットワークを提案する。
画像シーンの多次元的特徴を効果的に向上するために、2つの2次元処理モジュール(畳み込みエンコーダ-デコーダ構造)を追加します。
従来のCS-based FISTA法とDL-based gamma-Net法と比較して,提案手法は良好な画像精度を有しつつ,完全性を向上させる。
論文 参考訳(メタデータ) (2022-11-28T02:01:43Z) - Occlusion-Aware Instance Segmentation via BiLayer Network Architectures [73.45922226843435]
本稿では,2層畳み込みネットワーク(BCNet)を提案する。このネットワークでは,トップ層がオブジェクト(オブオーバ)を検出し,ボトム層が部分的にオブオーバドされたインスタンス(オブオーバド)を推測する。
一般的な畳み込みネットワーク設計,すなわちFCN(Fully Convolutional Network)とGCN(Graph Convolutional Network)を用いた2層構造の有効性について検討する。
論文 参考訳(メタデータ) (2022-08-08T21:39:26Z) - Distilling Ensemble of Explanations for Weakly-Supervised Pre-Training
of Image Segmentation Models [54.49581189337848]
本稿では,分類データセットに基づく画像分割モデルのエンドツーエンド事前学習を可能にする手法を提案する。
提案手法は重み付きセグメンテーション学習法を利用して,重み付きセグメンテーションネットワークを事前訓練する。
実験の結果,ImageNetにソースデータセットとしてPSSLを伴って提案されたエンドツーエンドの事前トレーニング戦略が,さまざまなセグメンテーションモデルの性能向上に成功していることがわかった。
論文 参考訳(メタデータ) (2022-07-04T13:02:32Z) - Retinal Vessel Segmentation with Pixel-wise Adaptive Filters [47.8629995041574]
本稿では網膜血管分割の課題に対処する2つの新しい手法を提案する。
まず,マルチスケール残差類似度収集(MRSG)と呼ばれる軽量モジュールを考案し,画素ワイド適応フィルタ(PAフィルタ)を生成する。
第2に,セグメント化精度を高めるための応答キュー消去(RCE)戦略を導入する。
論文 参考訳(メタデータ) (2022-02-03T14:40:36Z) - Bidirectional Multi-scale Attention Networks for Semantic Segmentation
of Oblique UAV Imagery [30.524771772192757]
本稿では、より適応的で効果的な特徴抽出のために、複数スケールの特徴を双方向に融合する新しい双方向多スケールアテンションネットワークを提案する。
当モデルでは,平均和合(mIoU)スコア70.80%でSOTA(State-of-the-art)を達成した。
論文 参考訳(メタデータ) (2021-02-05T11:02:15Z) - Target Detection and Segmentation in Circular-Scan
Synthetic-Aperture-Sonar Images using Semi-Supervised Convolutional
Encoder-Decoders [9.713290203986478]
マルチアスペクト・セミコヒーレント画像のためのサリエンシーベースのマルチターゲット検出・セグメンテーションフレームワークを提案する。
我々のフレームワークはマルチブランチ・畳み込みエンコーダ・デコーダネットワーク(MB-CEDN)に依存している。
私たちのフレームワークはディープネットワークよりも優れています。
論文 参考訳(メタデータ) (2021-01-10T18:58:45Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
3次元医用画像からの血管の自動抽出は血管疾患の診断に不可欠である。
既存の方法では、3次元画像からそのような細い管状構造を分割する際に、抽出された容器の不連続に悩まされることがある。
抽出された船舶の連続性を維持するためには、地球的幾何学を考慮に入れる必要があると論じる。
この課題を解決するためのハイブリッド表現学習手法を提案します。
論文 参考訳(メタデータ) (2020-12-14T05:22:49Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
病理組織像における腺分節に対するPRS2モデルを提案する。
このモデルはセグメンテーションネットワーク(S-Net)とペア関係ネットワーク(PR-Net)から構成される。
我々は,GlaSデータセットの最近の5つの手法とCRAGデータセットの最近の3つの手法を比較した。
論文 参考訳(メタデータ) (2020-08-06T15:02:38Z) - Image Segmentation Using Hybrid Representations [2.414172101538764]
医用画像セグメンテーションのための DU-Net という,エンド・ツー・エンドのU-Net ベースのネットワークを提案する。
SCは変換不変であり、リプシッツは変形に連続し、DU-Netは他の従来のCNNよりも優れる。
提案手法は,最先端手法と競合する性能を持つ基本U-Netよりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-04-15T13:07:35Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
少ないショットセグメンテーションは、少数のトレーニングイメージを持つ新しいクラスに一般化できるセグメンテーションモデルを学ぶことを目的としている。
相互参照機構により、我々のネットワークは2つの画像に共起する物体をよりよく見つけることができる。
PASCAL VOC 2012データセットの実験は、我々のネットワークが最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2020-03-24T04:55:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。