論文の概要: Physics of Skill Learning
- arxiv url: http://arxiv.org/abs/2501.12391v1
- Date: Tue, 21 Jan 2025 18:59:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:26:34.590799
- Title: Physics of Skill Learning
- Title(参考訳): スキル学習の物理
- Authors: Ziming Liu, Yizhou Liu, Eric J. Michaud, Jeff Gore, Max Tegmark,
- Abstract要約: 我々は、スキル学習の物理、すなわち、トレーニング中にニューラルネットワークでスキルがどのように学習されるかを理解することを目的としている。
本稿では,幾何モデル,資源モデル,ドミノモデルという,様々な複雑さを持つ3つのモデルを提案する。
ドミノ効果は、リソース解釈がリソースモデルに刺激を与える幾何学モデルで再現することができる。
リソースモデルは、構成タスクの学習力学に光を当てます。
Dominoモデルはモジュラリティの利点を明らかにします。
- 参考スコア(独自算出の注目度): 15.561885063255607
- License:
- Abstract: We aim to understand physics of skill learning, i.e., how skills are learned in neural networks during training. We start by observing the Domino effect, i.e., skills are learned sequentially, and notably, some skills kick off learning right after others complete learning, similar to the sequential fall of domino cards. To understand the Domino effect and relevant behaviors of skill learning, we take physicists' approach of abstraction and simplification. We propose three models with varying complexities -- the Geometry model, the Resource model, and the Domino model, trading between reality and simplicity. The Domino effect can be reproduced in the Geometry model, whose resource interpretation inspires the Resource model, which can be further simplified to the Domino model. These models present different levels of abstraction and simplification; each is useful to study some aspects of skill learning. The Geometry model provides interesting insights into neural scaling laws and optimizers; the Resource model sheds light on the learning dynamics of compositional tasks; the Domino model reveals the benefits of modularity. These models are not only conceptually interesting -- e.g., we show how Chinchilla scaling laws can emerge from the Geometry model, but also are useful in practice by inspiring algorithmic development -- e.g., we show how simple algorithmic changes, motivated by these toy models, can speed up the training of deep learning models.
- Abstract(参考訳): 我々は、スキル学習の物理、すなわち、トレーニング中にニューラルネットワークでスキルがどのように学習されるかを理解することを目的としている。
ドミノ効果、すなわち、スキルが順次学習され、特に、ドミノカードのシーケンシャルフォールと同様、他の学習の直後に学習が始まります。
ドミノ効果とスキルラーニングの関連行動を理解するために,我々は物理学者の抽象化と単純化のアプローチを採用する。
我々は、幾何モデル、資源モデル、ドミノモデルという3つの複雑なモデルを提案する。現実と単純さのトレードオフである。ドミノ効果は、リソース解釈がドミノモデルにさらに単純化されるリソースモデルに再現することができる。これらのモデルは、異なるレベルの抽象化と単純化を提供する。それぞれのモデルは、スキル学習のいくつかの側面を研究するのに有用である。ゲメトリモデルは、ニューラルネットワークのスケーリング法則とオプティマイザに関する興味深い洞察を提供する。リソースモデルは、合成タスクの学習のダイナミクスに光を当てる。ドミノモデルは、モジュラーモデルの利点を明らかにする。これらのモデルは、概念的に興味深いだけでなく、例えば、チミラスケーリング法が幾何学モデルからどのように出現するかを示す。
関連論文リスト
- SOLD: Reinforcement Learning with Slot Object-Centric Latent Dynamics [16.020835290802548]
Slot-Attention for Object-centric Latent Dynamicsは、画素入力からオブジェクト中心の動的モデルを学ぶ新しいアルゴリズムである。
構造化潜在空間は、モデル解釈可能性を改善するだけでなく、振る舞いモデルが推論する価値のある入力空間も提供することを実証する。
以上の結果から,SOLDは,最先端のモデルベースRLアルゴリズムであるDreamerV3よりも,さまざまなベンチマークロボット環境において優れていた。
論文 参考訳(メタデータ) (2024-10-11T14:03:31Z) - Breaking the Curse of Dimensionality in Deep Neural Networks by Learning
Invariant Representations [1.9580473532948401]
この論文は、これらのモデルのアーキテクチャとそれらが処理するデータ内の固有の構造との関係を研究することによって、ディープラーニングの理論的基礎を探求する。
ディープラーニングアルゴリズムの有効性を駆動するものは何か,いわゆる次元の呪いに勝てるのか,と問う。
本手法は,実験的な研究と物理に触発された玩具モデルを組み合わせることによって,深層学習に実証的なアプローチをとる。
論文 参考訳(メタデータ) (2023-10-24T19:50:41Z) - InDL: A New Dataset and Benchmark for In-Diagram Logic Interpretation
based on Visual Illusion [1.7980584146314789]
本稿では,深層学習モデルの論理解釈能力を評価するための新しい手法を提案する。
これらのモデルを厳格にテストし、ベンチマークするために設計された、ユニークなデータセットであるInDLを構築します。
我々は、6つの古典的な幾何学的錯視を利用して、人間と機械の視覚知覚の比較フレームワークを構築した。
論文 参考訳(メタデータ) (2023-05-28T13:01:32Z) - Distilling Knowledge from Self-Supervised Teacher by Embedding Graph
Alignment [52.704331909850026]
我々は、自己指導型事前学習モデルから他の学生ネットワークへ知識を伝達するための新しい知識蒸留フレームワークを定式化した。
自己教師型学習におけるインスタンス識別の精神に触発され,特徴埋め込み空間におけるグラフ定式化によるインスタンスとインスタンスの関係をモデル化する。
蒸留方式は, 学生ネットワーク上での表現学習を促進するために, 自己指導型知識の伝達に柔軟に適用できる。
論文 参考訳(メタデータ) (2022-11-23T19:27:48Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
我々は脳のメタラーニングと連想機構に基づく生涯学習のパラダイムを設計する。
知識の抽出と知識の記憶という2つの側面から問題に取り組む。
提案した学習パラダイムが,異なるタスクのモデルを同じ最適に収束させることができることを理論的に分析した。
論文 参考訳(メタデータ) (2022-08-27T09:27:36Z) - A Differentiable Recipe for Learning Visual Non-Prehensile Planar
Manipulation [63.1610540170754]
視覚的非包括的平面操作の問題に焦点をあてる。
本稿では,ビデオデコードニューラルモデルと接触力学の先行情報を組み合わせた新しいアーキテクチャを提案する。
モジュラーで完全に差別化可能なアーキテクチャは、目に見えないオブジェクトやモーションの学習専用手法よりも優れていることが分かりました。
論文 参考訳(メタデータ) (2021-11-09T18:39:45Z) - What Do Deep Nets Learn? Class-wise Patterns Revealed in the Input Space [88.37185513453758]
本研究では,深層ニューラルネットワーク(DNN)が学習するクラスワイズな知識を,異なる環境下で可視化し,理解する手法を提案する。
本手法は,各クラスのモデルが学習した知識を表現するために,画素空間内の1つの予測パターンを探索する。
逆境環境では、逆境に訓練されたモデルはより単純化された形状パターンを学ぶ傾向がある。
論文 参考訳(メタデータ) (2021-01-18T06:38:41Z) - Model-Based Inverse Reinforcement Learning from Visual Demonstrations [20.23223474119314]
本稿では,視覚的人間の実演のみを与えられた場合のコスト関数を学習する,勾配に基づく逆強化学習フレームワークを提案する。
学習したコスト関数は、視覚モデル予測制御によって実証された振る舞いを再現するために使用される。
2つの基本的なオブジェクト操作タスクでハードウェアのフレームワークを評価する。
論文 参考訳(メタデータ) (2020-10-18T17:07:53Z) - Learning abstract structure for drawing by efficient motor program
induction [52.13961975752941]
我々は、人間が構造化された事前知識を迅速に取得する方法を研究するために、自然主義的な描画タスクを開発する。
一般化を支援する抽象的な描画手順を自然に学習していることが示される。
本稿では,これらの再利用可能な描画プログラムを学習者がどのように発見できるかのモデルを提案する。
論文 参考訳(メタデータ) (2020-08-08T13:31:14Z) - Model-Based Reinforcement Learning for Atari [89.3039240303797]
エージェントがモデルフリーの手法よりも少ないインタラクションでAtariゲームを解くことができることを示す。
本実験は,エージェントと環境間の100kの相互作用の少ないデータ構造における,AtariゲームにおけるSimPLeの評価である。
論文 参考訳(メタデータ) (2019-03-01T15:40:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。