論文の概要: Optimizing Blockchain Analysis: Tackling Temporality and Scalability with an Incremental Approach with Metropolis-Hastings Random Walks
- arxiv url: http://arxiv.org/abs/2501.12491v1
- Date: Tue, 21 Jan 2025 20:34:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:29:14.212445
- Title: Optimizing Blockchain Analysis: Tackling Temporality and Scalability with an Incremental Approach with Metropolis-Hastings Random Walks
- Title(参考訳): ブロックチェーン分析を最適化する - Metropolis-Hastings Random Walks による漸進的アプローチによるテンポラリティとスケーラビリティの対処
- Authors: Junliang Luo, Xue Liu,
- Abstract要約: 既存のメソッドは主にトランザクションネットワークのスナップショットに焦点を当てている。
本稿では,トランザクションネットワークにおけるランダムウォークに基づくノード表現学習のための漸進的なアプローチを提案する。
潜在的なアプリケーションには、トランザクションネットワークの監視、不正検出のためのブロックチェーンアドレスの効率的な分類、ネットワーク内の特別なアドレスタイプの識別などがある。
- 参考スコア(独自算出の注目度): 2.855856661274715
- License:
- Abstract: Blockchain technology, with implications in the financial domain, offers data in the form of large-scale transaction networks. Analyzing transaction networks facilitates fraud detection, market analysis, and supports government regulation. Despite many graph representation learning methods for transaction network analysis, we pinpoint two salient limitations that merit more investigation. Existing methods predominantly focus on the snapshots of transaction networks, sidelining the evolving nature of blockchain transaction networks. Existing methodologies may not sufficiently emphasize efficient, incremental learning capabilities, which are essential for addressing the scalability challenges in ever-expanding large-scale transaction networks. To address these challenges, we employed an incremental approach for random walk-based node representation learning in transaction networks. Further, we proposed a Metropolis-Hastings-based random walk mechanism for improved efficiency. The empirical evaluation conducted on blockchain transaction datasets reveals comparable performance in node classification tasks while reducing computational overhead. Potential applications include transaction network monitoring, the efficient classification of blockchain addresses for fraud detection or the identification of specialized address types within the network.
- Abstract(参考訳): ブロックチェーン技術は金融分野に影響を及ぼすが、大規模トランザクションネットワークという形でデータを提供する。
取引ネットワークの分析は不正検出、市場分析を促進し、政府の規制をサポートする。
トランザクションネットワーク分析のためのグラフ表現学習手法は数多く存在するが、より詳細な調査に役立つ2つの有能な制限を指摘できる。
既存の方法は、主にトランザクションネットワークのスナップショットに焦点を当て、ブロックチェーントランザクションネットワークの進化する性質を補完する。
既存の方法論は効率的でインクリメンタルな学習能力に十分に重点を置いていないかもしれない。
これらの課題に対処するために、トランザクションネットワークにおけるランダムウォークに基づくノード表現学習に漸進的なアプローチを採用した。
さらに,メトロポリス・ハスティングスをベースとしたランダムウォーク機構を提案する。
ブロックチェーントランザクションデータセット上で実施された経験的評価は、計算オーバーヘッドを減らしながら、ノード分類タスクで同等のパフォーマンスを示す。
潜在的なアプリケーションには、トランザクションネットワークの監視、不正検出のためのブロックチェーンアドレスの効率的な分類、ネットワーク内の特別なアドレスタイプの識別などがある。
関連論文リスト
- Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
我々は、ブロックチェーン対応Web 3.0のための、グラフ注意ネットワーク(GAT)ベースの信頼できるブロック伝搬最適化フレームワークを設計する。
ブロック伝搬の信頼性を実現するために,主観的論理モデルに基づく評価機構を導入する。
グラフ構造化データの処理能力に優れたGATが存在することを考慮し、GATを強化学習に利用して最適なブロック伝搬軌道を得る。
論文 参考訳(メタデータ) (2024-03-20T01:58:38Z) - Enhanced Security and Efficiency in Blockchain with Aggregated Zero-Knowledge Proof Mechanisms [15.034624246970154]
ブロックチェーンシステムにおけるデータ検証の現在のアプローチは、効率性と計算オーバーヘッドの観点から、課題に直面している。
本研究では,メルクル木構造におけるゼロ知識証明の革新的集約手法を提案する。
我々は,その生成と検証に必要な証明と計算資源を著しく削減するシステムを開発した。
論文 参考訳(メタデータ) (2024-02-06T09:26:46Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence(GAI)は、ブロックチェーン技術の課題に対処するための有望なソリューションとして登場した。
本稿では、まずGAI技術を紹介し、そのアプリケーションの概要を説明し、GAIをブロックチェーンに統合するための既存のソリューションについて議論する。
論文 参考訳(メタデータ) (2024-01-28T10:46:17Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Blockchain Large Language Models [65.7726590159576]
本稿では,異常なブロックチェーントランザクションを検出するための動的,リアルタイムなアプローチを提案する。
提案するツールであるBlockGPTは、ブロックチェーンアクティビティのトレース表現を生成し、大規模な言語モデルをスクラッチからトレーニングして、リアルタイム侵入検出システムとして機能させる。
論文 参考訳(メタデータ) (2023-04-25T11:56:18Z) - Detecting Anomalous Cryptocurrency Transactions: an AML/CFT Application
of Machine Learning-based Forensics [5.617291981476445]
本論文は,さまざまな手法を用いて,有向グラフネットワークとして表現されるBitcoinトランザクションの現実的なデータセットを解析する。
これは、Graph Convolutional Networks(GCN)とGraph Attention Networks(GAT)として知られるニューラルネットワークタイプが、有望なAML/CFTソリューションであることを示している。
論文 参考訳(メタデータ) (2022-06-07T16:22:55Z) - Unsupervised Domain-adaptive Hash for Networks [81.49184987430333]
ドメイン適応型ハッシュ学習はコンピュータビジョンコミュニティでかなりの成功を収めた。
UDAHと呼ばれるネットワークのための教師なしドメイン適応型ハッシュ学習手法を開発した。
論文 参考訳(メタデータ) (2021-08-20T12:09:38Z) - Blockchain Phishing Scam Detection via Multi-channel Graph
Classification [1.6980621769406918]
フィッシング詐欺検出方法は、被害者を保護し、より健全なブロックチェーンエコシステムを構築する。
ユーザのためのトランザクションパターングラフを定義し,フィッシング詐欺検出をグラフ分類タスクに変換する。
提案したマルチチャネルグラフ分類モデル(MCGC)は,対象ユーザのトランザクションパターンの特徴を抽出することにより,潜在的なフィッシングを検出することができる。
論文 参考訳(メタデータ) (2021-08-19T02:59:55Z) - Identity Inference on Blockchain using Graph Neural Network [5.5927440285709835]
アカウントのアイデンティティに関する事前推論を目的としたアイデンティティ推論は、ブロックチェーンセキュリティにおいて重要な役割を果たします。
本稿では,id推論タスクをグラフ分類パターンに変換するトランザクションサブグラフの観点から,ユーザの行動を解析するための新しい手法を提案する。
また、$textI2 textBGNN$という汎用的なエンドツーエンドグラフニューラルネットワークモデルを提案し、サブグラフを入力として受け入れ、トランザクションサブグラフパターンをアカウントアイデンティティにマッピングする関数を学ぶことができる。
論文 参考訳(メタデータ) (2021-04-14T00:15:38Z) - Temporal-Amount Snapshot MultiGraph for Ethereum Transaction Tracking [5.579169055801065]
ネットワークの観点からのトランザクションのより深い理解を提供するリンク予測によるトランザクション追跡の問題について検討する。
具体的には,TASMG(temporal-amount snapshot multigraph)とTAW(temporal-amount walk)からなる組込みリンク予測フレームワークを提案する。
トランザクションネットワークの現実的なルールと特徴を考慮することにより、TASMGはトランザクションレコードを時間単位のネットワークとしてモデル化し、TAWはトランザクションレコードを介してアカウントを効果的に埋め込みます。
論文 参考訳(メタデータ) (2021-02-16T08:21:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。