論文の概要: Temporal-Amount Snapshot MultiGraph for Ethereum Transaction Tracking
- arxiv url: http://arxiv.org/abs/2102.08013v1
- Date: Tue, 16 Feb 2021 08:21:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-17 14:50:48.170444
- Title: Temporal-Amount Snapshot MultiGraph for Ethereum Transaction Tracking
- Title(参考訳): ethereumトランザクショントラッキングのための時空アマウントスナップショットマルチグラフ
- Authors: Yunyi Xie, Jie Jin, Jian Zhang, Shanqing Yu, and Qi Xuan
- Abstract要約: ネットワークの観点からのトランザクションのより深い理解を提供するリンク予測によるトランザクション追跡の問題について検討する。
具体的には,TASMG(temporal-amount snapshot multigraph)とTAW(temporal-amount walk)からなる組込みリンク予測フレームワークを提案する。
トランザクションネットワークの現実的なルールと特徴を考慮することにより、TASMGはトランザクションレコードを時間単位のネットワークとしてモデル化し、TAWはトランザクションレコードを介してアカウントを効果的に埋め込みます。
- 参考スコア(独自算出の注目度): 5.579169055801065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the wide application of blockchain in the financial field, the rise of
various types of cybercrimes has brought great challenges to the security of
blockchain. In order to better understand this emerging market and explore more
efficient countermeasures for effective supervision, it is imperative to track
transactions on blockchain-based systems. Due to the openness of Ethereum, we
can easily access the publicly available transaction records, model them as a
complex network, and further study the problem of transaction tracking via link
prediction, which provides a deeper understanding of Ethereum transactions from
a network perspective. Specifically, we introduce an embedding based link
prediction framework that is composed of temporal-amount snapshot multigraph
(TASMG) and present temporal-amount walk (TAW). By taking the realistic rules
and features of transaction networks into consideration, we propose TASMG to
model Ethereum transaction records as a temporal-amount network and then
present TAW to effectively embed accounts via their transaction records, which
integrates temporal and amount information of the proposed network.
Experimental results demonstrate the superiority of the proposed framework in
learning more informative representations and could be an effective method for
transaction tracking.
- Abstract(参考訳): 金融分野におけるブロックチェーンの広範な適用により、さまざまなタイプのサイバー犯罪が出現し、ブロックチェーンのセキュリティに大きな課題が生じた。
この新興市場をより深く理解し、効果的な監督のためのより効率的な対策を探求するには、ブロックチェーンベースのシステムでトランザクションを追跡することが不可欠である。
ethereumのオープン性により、公開されているトランザクションレコードにアクセスし、複雑なネットワークとしてモデル化し、ネットワークの観点からethereumトランザクションのより深い理解を提供するリンク予測によるトランザクション追跡の問題をさらに研究することができる。
具体的には,TASMG(temporal-amount snapshot multigraph)とTAW(temporal-amount walk)からなる組込みリンク予測フレームワークを提案する。
トランザクションネットワークの現実的なルールと特徴を考慮に入れて,ethereumトランザクションレコードを時間的最適化ネットワークとしてモデル化し,提案するネットワークの時間的および量的情報を統合したトランザクションレコードを介して,tawsを効果的にアカウントを埋め込む手法を提案する。
実験の結果,提案手法がより情報的な表現を学習する上で優れていることを示し,トランザクション追跡に有効な手法となる可能性が示唆された。
関連論文リスト
- Blockchain Large Language Models [65.7726590159576]
本稿では,異常なブロックチェーントランザクションを検出するための動的,リアルタイムなアプローチを提案する。
提案するツールであるBlockGPTは、ブロックチェーンアクティビティのトレース表現を生成し、大規模な言語モデルをスクラッチからトレーニングして、リアルタイム侵入検出システムとして機能させる。
論文 参考訳(メタデータ) (2023-04-25T11:56:18Z) - Traj-MAE: Masked Autoencoders for Trajectory Prediction [69.7885837428344]
軌道予測は、危険を予測して信頼性の高い自動運転システムを構築する上で重要な課題である。
本稿では,運転環境におけるエージェントの複雑な動作をよりよく表現する,軌道予測のための効率的なマスク付きオートエンコーダを提案する。
複数エージェント設定と単一エージェント設定の両方の実験結果から,Traj-MAEが最先端手法と競合する結果が得られることが示された。
論文 参考訳(メタデータ) (2023-03-12T16:23:27Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
仮想サービスプロバイダ(VSP)によるインセンティブのメカニズム設計の問題に対処し,センサデータ販売にIoTデバイスを採用。
帯域幅が限られているため,センサIoTデバイスによる配信データを削減するためにセマンティック抽出アルゴリズムを提案する。
本稿では,新しい反復型契約設計を提案し,マルチエージェント強化学習(MARL)の新たな変種を用いて,モデル付き多次元契約問題の解法を提案する。
論文 参考訳(メタデータ) (2023-02-22T15:52:37Z) - When Quantum Information Technologies Meet Blockchain in Web 3.0 [86.91054991998273]
我々は、分散データ転送と支払いトランザクションのための情報理論セキュリティを提供する、量子ブロックチェーン駆動のWeb 3.0フレームワークを紹介します。
Web 3.0で量子ブロックチェーンを実装するための潜在的なアプリケーションと課題について論じる。
論文 参考訳(メタデータ) (2022-11-29T05:38:42Z) - Detecting Anomalous Cryptocurrency Transactions: an AML/CFT Application
of Machine Learning-based Forensics [5.617291981476445]
本論文は,さまざまな手法を用いて,有向グラフネットワークとして表現されるBitcoinトランザクションの現実的なデータセットを解析する。
これは、Graph Convolutional Networks(GCN)とGraph Attention Networks(GAT)として知られるニューラルネットワークタイプが、有望なAML/CFTソリューションであることを示している。
論文 参考訳(メタデータ) (2022-06-07T16:22:55Z) - Blockchain Phishing Scam Detection via Multi-channel Graph
Classification [1.6980621769406918]
フィッシング詐欺検出方法は、被害者を保護し、より健全なブロックチェーンエコシステムを構築する。
ユーザのためのトランザクションパターングラフを定義し,フィッシング詐欺検出をグラフ分類タスクに変換する。
提案したマルチチャネルグラフ分類モデル(MCGC)は,対象ユーザのトランザクションパターンの特徴を抽出することにより,潜在的なフィッシングを検出することができる。
論文 参考訳(メタデータ) (2021-08-19T02:59:55Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
スーパーアプリケーションの金融サービスにおける不正行為防止のための関係グラフ畳み込みネットワーク手法の枠組みを提案する。
我々は,グラフニューラルネットワークの解釈可能性アルゴリズムを用いて,ユーザの分類タスクに対する最も重要な関係を判定する。
以上の結果から,Super-Appの代替データと高接続性で得られるインタラクションを利用するモデルには,付加価値があることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T00:02:06Z) - TSGN: Transaction Subgraph Networks for Identifying Ethereum Phishing
Accounts [2.3112192919085826]
トランザクションサブグラフネットワーク(TSGN)ベースの分類モデルにより、フィッシングアカウントを識別する。
TSGNは、フィッシングアカウントの識別に役立つより多くの潜在的な情報を提供することができます。
論文 参考訳(メタデータ) (2021-04-18T08:12:51Z) - Identity Inference on Blockchain using Graph Neural Network [5.5927440285709835]
アカウントのアイデンティティに関する事前推論を目的としたアイデンティティ推論は、ブロックチェーンセキュリティにおいて重要な役割を果たします。
本稿では,id推論タスクをグラフ分類パターンに変換するトランザクションサブグラフの観点から,ユーザの行動を解析するための新しい手法を提案する。
また、$textI2 textBGNN$という汎用的なエンドツーエンドグラフニューラルネットワークモデルを提案し、サブグラフを入力として受け入れ、トランザクションサブグラフパターンをアカウントアイデンティティにマッピングする関数を学ぶことができる。
論文 参考訳(メタデータ) (2021-04-14T00:15:38Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
作業の証明(英: proof of work、PoW)は、当事者が計算タスクの解決にいくらかの労力を費やしたことを他人に納得させることができる重要な暗号構造である。
本研究では、量子戦略に対してそのようなPoWの連鎖を見つけることの難しさについて検討する。
我々は、PoWs問題の連鎖が、マルチソリューションBernoulliサーチと呼ばれる問題に還元されることを証明し、量子クエリの複雑さを確立する。
論文 参考訳(メタデータ) (2020-12-30T18:03:56Z) - SilkViser:A Visual Explorer of Blockchain-based Cryptocurrency
Transaction Data [5.365812378348284]
この研究では、SilkViserという新しいオンライン暗号通貨トランザクションデータ閲覧ツールを紹介した。
詳細なシナリオと要件分析によってガイドされ、視覚化設計の一連のシリーズを作成します。
結果は、SilkViserがNUsersとEUserの要件を満たすことができることを示している。
論文 参考訳(メタデータ) (2020-09-06T05:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。