論文の概要: EvidenceMap: Learning Evidence Analysis to Unleash the Power of Small Language Models for Biomedical Question Answering
- arxiv url: http://arxiv.org/abs/2501.12746v4
- Date: Fri, 14 Feb 2025 01:02:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 15:33:08.090619
- Title: EvidenceMap: Learning Evidence Analysis to Unleash the Power of Small Language Models for Biomedical Question Answering
- Title(参考訳): EvidenceMap: バイオメディカル質問応答のための小言語モデルの力を解き放つためのエビデンス分析
- Authors: Chang Zong, Jian Wan, Siliang Tang, Lei Zhang,
- Abstract要約: バイオメディカル・エビデンス・マップ(EvidenceMap)は,バイオメディカル・エビデンス(バイオメディカル・エビデンス・エビデンス・エビデンス・エビデンス・エビデンス・マップ(バイオメディカル・エビデンス・エビデンス・エビデンス・エビデンス・エビデンス・エビデンス・エビデンス・エビデンス・エビデンス・エビデンス・エビデンス・マップ(バイオメディカル・エビデンス・エビデンス・エビデンス)を学習するための言語モデルである。
本手法は,66Mパラメータのみを微調整したモデルによるエビデンス解析を行い,基準ベースの品質と精度の5.7%,8B LLMのRAG法を19.9%上回った。
- 参考スコア(独自算出の注目度): 29.70354593617791
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When addressing professional questions in the biomedical domain, humans typically acquire multiple pieces of information as evidence and engage in multifaceted analysis to provide high-quality answers. Current LLM-based question answering methods lack a detailed definition and learning process for evidence analysis, leading to the risk of error propagation and hallucinations while using evidence. Although increasing the parameter size of LLMs can alleviate these issues, it also presents challenges in training and deployment with limited resources. In this study, we propose EvidenceMap, which aims to enable a tiny pre-trained language model to explicitly learn multiple aspects of biomedical evidence, including supportive evaluation, logical correlation and content summarization, thereby latently guiding a small generative model (around 3B parameters) to provide textual responses. Experimental results demonstrate that our method, learning evidence analysis by fine-tuning a model with only 66M parameters, exceeds the RAG method with an 8B LLM by 19.9% and 5.7% in reference-based quality and accuracy, respectively.
- Abstract(参考訳): 生物医学領域で専門的な問題に取り組む際、人間は通常、複数の情報を証拠として取得し、高品質な答えを提供するために多面的な分析を行う。
現在のLCMに基づく質問応答法では、エビデンス分析のための詳細な定義と学習プロセスが欠如しており、エビデンスを用いて誤りの伝播と幻覚のリスクが生じる。
LLMのパラメータサイズの増加はこれらの問題を緩和するが、限られたリソースでトレーニングやデプロイを行う際の課題も提示する。
本研究では, 支援的評価, 論理的相関, 内容要約など, バイオメディカルエビデンス(生物医学的エビデンス)の複数の側面を明確に学習することを目的としたEvidenceMapを提案する。
実験結果から,66Mパラメータのみを用いたモデルの微調整によるエビデンス解析は,基準ベースの品質と精度の5.7%,8B LLMのRAG法を19.9%上回った。
関連論文リスト
- MicroVQA: A Multimodal Reasoning Benchmark for Microscopy-Based Scientific Research [57.61445960384384]
MicroVQA は、生物学の専門家が様々な顕微鏡のモードでキュレートした 1,042 の多重選択質問 (MCQ) から構成される。
最先端のMLLMのベンチマークでは、ピーク性能は53%であった。
チェーン・オブ・シント・レスポンスのエキスパート分析では、知覚エラーが最も頻繁であり、続いて知識エラー、そして過一般化エラーが続く。
論文 参考訳(メタデータ) (2025-03-17T17:33:10Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
大規模言語モデル(LLM)は、しばしばオープンエンドの医学的問題に苦しむ。
本稿では,構造化医療推論を利用した新しいアプローチを提案する。
我々の手法は85.8のファクチュアリティスコアを達成し、微調整されたモデルを上回る。
論文 参考訳(メタデータ) (2025-03-05T05:24:55Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - M-QALM: A Benchmark to Assess Clinical Reading Comprehension and Knowledge Recall in Large Language Models via Question Answering [14.198330378235632]
我々は,3つのジェネラリストと3つの専門的なバイオメディカルサブドメインにおいて,22のデータセットに関する大規模な実験研究を行うために,複数選択と抽象質問応答を用いた。
15個のLLMの性能の多面的解析により、リコールや理解の向上につながる命令チューニングなどの成功要因が明らかになった。
最近提案されたドメイン適応モデルには十分な知識が欠如している可能性があるが、収集した医療知識データセットを直接微調整することは、奨励的な結果を示している。
我々は、必要な知識を単に思い出し、提示された知識と統合するモデルの能力の間に大きなギャップがあることを明らかにする、スキル指向手動エラー解析で定量的結果を補完する。
論文 参考訳(メタデータ) (2024-06-06T02:43:21Z) - PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics [51.17512229589]
PoLLMgraphは、大規模言語モデルのためのモデルベースのホワイトボックス検出および予測手法である。
LLMの内部状態遷移ダイナミクスを解析することにより,幻覚を効果的に検出できることを示す。
我々の研究は、LLMのモデルベースのホワイトボックス分析の新しい手法を開拓し、LLMの振る舞いの複雑なダイナミクスをさらに探求し、理解し、洗練する研究コミュニティを動機付けている。
論文 参考訳(メタデータ) (2024-04-06T20:02:20Z) - Chain-of-Discussion: A Multi-Model Framework for Complex Evidence-Based Question Answering [55.295699268654545]
本稿では,オープンソースのLarge Language Model間の相乗効果を利用する新しいChain-ofDiscussionフレームワークを提案する。
実験の結果,複数のLSM間の議論は回答の質を高める上で重要な役割を担っていることがわかった。
論文 参考訳(メタデータ) (2024-02-26T05:31:34Z) - Graph-Based Retriever Captures the Long Tail of Biomedical Knowledge [2.2814097119704058]
大規模言語モデル(LLM)は、膨大な知識を要約して提示することで、情報の検索方法を変えつつある。
LLMはトレーニングセットから最も頻繁に見られる情報を強調し、まれな情報を無視する傾向があります。
本稿では,これらのクラスタをダウンサンプリングし,情報過負荷問題を緩和するために知識グラフを活用する新しい情報検索手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T18:31:11Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Revealing Multimodal Contrastive Representation Learning through Latent
Partial Causal Models [85.67870425656368]
マルチモーダルデータに特化して設計された統一因果モデルを提案する。
マルチモーダル・コントラスト表現学習は潜在結合変数の同定に優れていることを示す。
実験では、仮定が破られたとしても、我々の発見の堅牢性を示す。
論文 参考訳(メタデータ) (2024-02-09T07:18:06Z) - Question-Answering Based Summarization of Electronic Health Records
using Retrieval Augmented Generation [0.0]
本稿では,セマンティック検索,検索拡張生成,質問応答を組み合わせることで,欠点を軽減できる手法を提案する。
我々のアプローチは非常に効率的で、訓練は最小限から不要であり、LLMの「幻覚」問題に苦しむことはない。
要約には繰り返しの内容はなく、特定の質問に対する多様な回答があるため、多様性を保証する。
論文 参考訳(メタデータ) (2024-01-03T00:09:34Z) - Zero-shot Causal Graph Extrapolation from Text via LLMs [50.596179963913045]
我々は,自然言語から因果関係を推定する大規模言語モデル (LLM) の能力を評価する。
LLMは、(特別な)トレーニングサンプルを必要とせずにペア関係のベンチマークで競合性能を示す。
我々は、反復的なペアワイズクエリを通して因果グラフを外挿するアプローチを拡張した。
論文 参考訳(メタデータ) (2023-12-22T13:14:38Z) - A New Benchmark and Reverse Validation Method for Passage-level
Hallucination Detection [63.56136319976554]
大きな言語モデル(LLM)は幻覚を発生させ、ミッションクリティカルなタスクにデプロイすると大きなダメージを与える可能性がある。
本稿では,逆検証に基づく自己チェック手法を提案し,ゼロリソース方式で事実誤りを自動的に検出する。
提案手法と既存のゼロリソース検出手法を2つのデータセット上で実証的に評価した。
論文 参考訳(メタデータ) (2023-10-10T10:14:59Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Can Large Language Models emulate an inductive Thematic Analysis of
semi-structured interviews? An exploration and provocation on the limits of
the approach and the model [0.0]
本稿では, GPT 3.5-Turboモデルを用いて, 帰納的テーマ解析のいくつかの側面をエミュレートした実験結果と考察を行った。
本論文の目的は, 定性解析における人間アナリストの代替ではなく, LLMデータ操作のいくつかの要素がある程度の定性研究を支援することができるかを知ることである。
論文 参考訳(メタデータ) (2023-05-22T13:16:07Z) - Large Language Models Encode Clinical Knowledge [21.630872464930587]
大規模言語モデル(LLM)は、自然言語の理解と生成において印象的な能力を示している。
本稿では, 現実性, 正確性, 潜在的害, バイアスを含む複数の軸に沿ったモデル回答の人為的評価のための枠組みを提案する。
本研究は,モデル尺度とインストラクション・インシデント・チューニングにより,理解,知識の想起,医学的推論が向上することを示す。
論文 参考訳(メタデータ) (2022-12-26T14:28:24Z) - Multilingual Multi-Aspect Explainability Analyses on Machine Reading Comprehension Models [76.48370548802464]
本稿では,マルチヘッド自己注意と最終MRCシステム性能の関係を検討するために,一連の解析実験を実施することに焦点を当てる。
問合せ及び問合せ理解の注意が問合せプロセスにおいて最も重要なものであることが判明した。
包括的可視化とケーススタディを通じて、注意マップに関するいくつかの一般的な知見も観察し、これらのモデルがどのように問題を解くかを理解するのに役立ちます。
論文 参考訳(メタデータ) (2021-08-26T04:23:57Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。