論文の概要: Reinforcement learning Based Automated Design of Differential Evolution Algorithm for Black-box Optimization
- arxiv url: http://arxiv.org/abs/2501.12881v1
- Date: Wed, 22 Jan 2025 13:41:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:53:54.154349
- Title: Reinforcement learning Based Automated Design of Differential Evolution Algorithm for Black-box Optimization
- Title(参考訳): 強化学習に基づくブラックボックス最適化のための微分進化アルゴリズムの自動設計
- Authors: Xu Yang, Rui Wang, Kaiwen Li, Ling Wang,
- Abstract要約: 微分進化(DE)アルゴリズムは最も効果的な進化アルゴリズムの1つとして認識されている。
ブラックボックス最適化のためのDEの自動設計に強化学習(RL)を用いる新しいフレームワークを提案する。
RLは高度なメタ最適化器として機能し、カスタマイズされたDE構成を生成する。
- 参考スコア(独自算出の注目度): 14.116216795259554
- License:
- Abstract: Differential evolution (DE) algorithm is recognized as one of the most effective evolutionary algorithms, demonstrating remarkable efficacy in black-box optimization due to its derivative-free nature. Numerous enhancements to the fundamental DE have been proposed, incorporating innovative mutation strategies and sophisticated parameter tuning techniques to improve performance. However, no single variant has proven universally superior across all problems. To address this challenge, we introduce a novel framework that employs reinforcement learning (RL) to automatically design DE for black-box optimization through meta-learning. RL acts as an advanced meta-optimizer, generating a customized DE configuration that includes an optimal initialization strategy, update rule, and hyperparameters tailored to a specific black-box optimization problem. This process is informed by a detailed analysis of the problem characteristics. In this proof-of-concept study, we utilize a double deep Q-network for implementation, considering a subset of 40 possible strategy combinations and parameter optimizations simultaneously. The framework's performance is evaluated against black-box optimization benchmarks and compared with state-of-the-art algorithms. The experimental results highlight the promising potential of our proposed framework.
- Abstract(参考訳): 微分進化(DE)アルゴリズムは最も効果的な進化アルゴリズムの1つとして認識され、その微分自由性によりブラックボックス最適化において顕著な効果を示す。
進化的突然変異戦略と高度なパラメータチューニング技術を取り入れ、性能を向上させるため、基礎的Dの多くの改良が提案されている。
しかしながら、すべての問題に対して普遍的に優れていることが証明された単一の変種は存在しない。
この課題に対処するために、メタラーニングによるブラックボックス最適化のためのDEを自動設計する強化学習(RL)を用いた新しいフレームワークを導入する。
RLは高度なメタ最適化器として機能し、特定のブラックボックス最適化問題に適した最適な初期化戦略、更新ルール、ハイパーパラメータを含むカスタマイズされたDE構成を生成する。
このプロセスは問題特性の詳細な解析によって通知される。
本稿では,40の可能な戦略組合せとパラメータ最適化のサブセットを同時に考慮し,二重深度Qネットワークを実装に活用する。
フレームワークのパフォーマンスはブラックボックス最適化ベンチマークで評価され、最先端のアルゴリズムと比較される。
実験結果は,提案フレームワークの有望な可能性を強調した。
関連論文リスト
- Integrating Chaotic Evolutionary and Local Search Techniques in Decision Space for Enhanced Evolutionary Multi-Objective Optimization [1.8130068086063336]
本稿では,SOMMOP(Single-Objective Multi-Modal Optimization)とMOO(Multi-Objective Optimization)の両方に焦点を当てる。
SOMMOPではニッチ技術とカオス進化を統合し,ガウス突然変異を併用したパーシスタンス・クラスタリングを行った。
MOOでは,これらの手法を不確実性に基づく選択,適応的チューニングを組み込んだ包括的フレームワークに拡張し,決定論的群集に半径(R)の概念を導入する。
論文 参考訳(メタデータ) (2024-11-12T15:18:48Z) - An accelerate Prediction Strategy for Dynamic Multi-Objective Optimization [7.272641346606365]
本稿では,進化的アルゴリズムフレームワークにおける予測戦略の高速化のための新しいアプローチを提案する。
本稿では,アルゴリズムの探索動作を予測・調整するために,二階微分を組み込んだ適応予測戦略を提案する。
標準DMOPのベンチマーク問題を用いて,提案手法の性能を4つの最先端アルゴリズムと比較した。
論文 参考訳(メタデータ) (2024-10-08T08:13:49Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: An Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
本稿では,大規模言語モデル(LLM)に基づくプロンプトの設計について検討する。
モデルパラメータ学習における2つの重要な要素を同定する。
特に、勾配に基づく最適化から理論的な枠組みや学習手法を借用し、改良された戦略を設計する。
論文 参考訳(メタデータ) (2024-02-27T15:05:32Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Enhancing Optimization Through Innovation: The Multi-Strategy Improved
Black Widow Optimization Algorithm (MSBWOA) [11.450701963760817]
本稿では,MSBWOA(Multi-Strategy Improved Black Widow Optimization Algorithm)を提案する。
複雑な最適化問題の解法において、標準的なブラックウィドウアルゴリズム(BW)の性能を向上させるように設計されている。
これは、多様性と初期の探索能力を高めるためにテントカオスマッピングを用いて人口を初期化すること、動的人口の維持と早期収束を防ぐために最も適していない個体に突然変異最適化を実装すること、局所最適から逃れるアルゴリズムの能力を高めるためにランダムな摂動戦略を追加すること、の4つの主要な戦略を統合する。
論文 参考訳(メタデータ) (2023-12-20T19:55:36Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
分解に基づく多目的進化アルゴリズム(MOEA/D)は、多目的最適化問題(MOP)を解く上で、極めて有望なアプローチであると考えられている。
本稿では,よく知られたPascoletti-Serafiniスキャラライゼーション法とマルチ参照ポイントの新たな戦略により,MOEA/Dアルゴリズムの改良を提案する。
論文 参考訳(メタデータ) (2021-10-27T02:07:08Z) - Meta Learning Black-Box Population-Based Optimizers [0.0]
人口ベースのブラックボックス一般化を推論するメタラーニングの利用を提案する。
メタロス関数は,学習アルゴリズムが検索動作を変更することを促進し,新たなコンテキストに容易に適合できることを示す。
論文 参考訳(メタデータ) (2021-03-05T08:13:25Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。