論文の概要: Neural network enhanced cross entropy benchmark for monitored circuits
- arxiv url: http://arxiv.org/abs/2501.13005v1
- Date: Wed, 22 Jan 2025 16:46:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:28:01.434442
- Title: Neural network enhanced cross entropy benchmark for monitored circuits
- Title(参考訳): ニューラルネットワークによるモニタ回路のクロスエントロピーベンチマーク
- Authors: Yangrui Hu, Yi Hong Teoh, William Witczak-Krempa, Roger G. Melko,
- Abstract要約: 我々は、リカレントニューラルネットワークを用いて、ネイティブトラップイオンMIPTの測定記録の表現を学習する。
この生成モデルを用いることで,クロスエントロピーを正確に推定するために必要な測定回数を大幅に削減できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We explore the interplay of quantum computing and machine learning to advance experimental protocols for observing measurement-induced phase transitions (MIPT) in quantum devices. In particular, we focus on trapped ion monitored circuits and apply the cross entropy benchmark recently introduced by [Li et al., Phys. Rev. Lett. 130, 220404 (2023)], which can mitigate the post-selection problem. By doing so, we reduce the number of projective measurements -- the sample complexity -- required per random circuit realization, which is a critical limiting resource in real devices. Since these projective measurement outcomes form a classical probability distribution, they are suitable for learning with a standard machine learning generative model. In this paper, we use a recurrent neural network (RNN) to learn a representation of the measurement record for a native trapped-ion MIPT, and show that using this generative model can substantially reduce the number of measurements required to accurately estimate the cross entropy. This illustrates the potential of combining quantum computing and machine learning to overcome practical challenges in realizing quantum experiments.
- Abstract(参考訳): 我々は,量子デバイスにおける測定誘起相転移(MIPT)を観測するための実験プロトコルを開発するために,量子コンピューティングと機械学習の相互作用について検討する。
特に、捕捉されたイオンモニタ回路に着目し、最近導入された[Li et al , Phys. Lett. 130, 220404 (2023)]のクロスエントロピーベンチマークを適用し、選択後の問題を緩和する。
これにより、実際のデバイスにおいて重要な制限リソースであるランダム回路の実現に要する射影測定(サンプルの複雑さ)の数を減らすことができる。
これらの射影測定結果は古典的な確率分布を形成するため、標準的な機械学習生成モデルを用いて学習するのに適している。
本稿では、リカレントニューラルネットワーク(RNN)を用いて、ネイティブトラップイオンMIPTの測定記録の表現を学習し、この生成モデルを用いることで、クロスエントロピーを正確に推定するために必要な測定回数を大幅に削減できることを示す。
これは量子コンピューティングと機械学習を組み合わせることで、量子実験の実現における実践的な課題を克服する可能性を示している。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Challenges and opportunities in the supervised learning of quantum
circuit outputs [0.0]
ディープニューラルネットワークは、関連するランダム量子回路の出力特性を予測できることが証明されている。
変動量子アルゴリズムでよく使用される回路の出力期待値を予測するために,ニューラルネットワークがどの程度の精度で学習できるかを検討する。
論文 参考訳(メタデータ) (2024-02-07T16:10:13Z) - Error-tolerant quantum convolutional neural networks for symmetry-protected topological phases [0.0]
パラメトリック化量子回路、測定、フィードフォワードに基づく量子ニューラルネットワークは、大量の量子データを処理できる。
量子畳み込みニューラルネットワーク(QCNN)を構築し,異なる対称性で保護された位相を認識できる。
QCNNの出力は閾値誤差確率以下の対称性破り誤差に対して頑健であることを示す。
論文 参考訳(メタデータ) (2023-07-07T16:47:02Z) - A Quantum Optical Recurrent Neural Network for Online Processing of
Quantum Times Series [0.7087237546722617]
量子光リカレントニューラルネットワーク(QORNN)は,量子チャネルの伝送速度を高めることができることを示す。
また、同モデルが不要であれば、同様のメモリ効果に対処できることも示している。
我々は、この最後のタスクの小さなバージョンをフォトニックプロセッサのBorealis上で実行します。
論文 参考訳(メタデータ) (2023-05-31T19:19:25Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
いくつかの分子量子ハミルトニアンの複雑な基底状態波動関数を学習するために、一般的なニューラルネットワークモデルを適用する。
ニューラルネットワークモデルを使用することで、単一コピー計測結果だけで観測対象を再構築するよりも堅牢な改善が得られます。
論文 参考訳(メタデータ) (2022-06-30T17:45:05Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
ジャジンスキー等式から動機付けられたアルゴリズムを用いて, 有限温度可観測体がどのように得られるかを示す。
長範囲の逆場イジングモデルにおける有限温度相転移は、捕捉されたイオン量子シミュレータで特徴づけられることを示す。
論文 参考訳(メタデータ) (2022-06-03T18:00:02Z) - Toward Physically Realizable Quantum Neural Networks [15.018259942339446]
量子ニューラルネットワーク(QNN)の現在のソリューションは、スケーラビリティに関する課題を提起している。
QNNの指数的状態空間は、トレーニング手順のスケーラビリティに課題をもたらす。
本稿では量子パーセプトロンの転送関数の帯域制限フーリエ展開に依存するQNNの新しいモデルを提案する。
論文 参考訳(メタデータ) (2022-03-22T23:03:32Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
グラフ型と量子系コヒーレンスの両方の要件を見つけるプロセスは自動化可能であることを示す。
この自動化は、特定のタイプの畳み込みニューラルネットワークを使用して、どのネットワークで、どのコヒーレンス要求の量子優位性が可能かを学習する。
我々の結果は、量子実験における利点の実証と、科学的研究と発見の自動化への道を開くために重要である。
論文 参考訳(メタデータ) (2020-01-15T18:36:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。