Probing the Quantum Nature of Gravity through Diffusion
- URL: http://arxiv.org/abs/2501.13030v1
- Date: Wed, 22 Jan 2025 17:22:49 GMT
- Title: Probing the Quantum Nature of Gravity through Diffusion
- Authors: Oliviero Angeli, Sandro Donadi, Giovanni Di Bartolomeo, José Luis Gaona-Reyes, Andrea Vinante, Angelo Bassi,
- Abstract summary: We present an alternative strategy that shifts the focus from complex quantum state manipulation to the simpler observation of a probe's motion.
By proving that a classical and local gravitational field must inherently display randomness to interact consistently with quantum matter, we show that this randomness induces measurable diffusion in a probe's motion.
This diffusion serves as a distinctive signature of classical gravity coupling to quantum matter.
- Score: 0.0
- License:
- Abstract: The quest to determine whether gravity is quantum has challenged physicists since the mid 20th century, due to the impracticability of accessing the Planck scale, where potential quantum gravity effects are expected to become relevant. While recent entanglement-based tests have provided a more promising theoretical path forward, the difficulty of preparing and controlling large quantum states has hindered practical progress. We present an alternative strategy that shifts the focus from complex quantum state manipulation to the simpler observation of a probe's motion. By proving that a classical and local gravitational field must inherently display randomness to interact consistently with quantum matter, we show that this randomness induces measurable diffusion in a probe's motion, even when the probe is in a classical state. This diffusion serves as a distinctive signature of classical gravity coupling to quantum matter. Our approach leverages existing experimental techniques, requiring only the accurate tracking of a probe's classical center of mass motion, and does not need any quantum state preparation, thereby positioning this method as a promising and practical avenue for advancing the investigation into the quantum nature of gravity.
Related papers
- Quantum Sensing from Gravity as Universal Dephasing Channel for Qubits [41.96816488439435]
WeExploit the generic phenomena of the gravitational redshift and Aharonov-Bohm phase.
We show that entangled quantum states dephase with a universal rate.
We propose qubit-based platforms as quantum sensors for precision gravitometers and mechanical strain gauges.
arXiv Detail & Related papers (2024-06-05T13:36:06Z) - To be or not to be, but where? [0.0]
Traditional approaches associate quantum systems with classical ones localized in spacetime.
canonical linearized quantum gravity disrupts this framework by preventing the formation of gauge-in-variant local algebras.
This presents a major obstacle for modeling early universe cosmology, gravity-entanglement experiments, and poses a significant roadblock toward a comprehensive theory of quantum gravity.
arXiv Detail & Related papers (2024-05-31T17:22:39Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Massive quantum systems as interfaces of quantum mechanics and gravity [0.0]
The traditional view from particle physics is that quantum gravity effects should only become detectable at extremely high energies and small length scales.
In recent decades, the size and mass of quantum systems that can be controlled in the laboratory have reached unprecedented scales.
This review focuses on proposals where massive quantum systems act as interfaces between quantum mechanics and gravity.
arXiv Detail & Related papers (2023-11-15T18:58:44Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Probing the Quantum Nature of Gravity in the Microgravity of Space [0.0]
We lay out the science case for furthering a community effort to study and lead progress in both theoretical and experimental aspects for space-based tests of fundamental physics.
Recent advances at the intersection of quantum information and gravity, along with quantum technologies, indicate that such tests may well be within reach of upcoming experimental capabilities.
arXiv Detail & Related papers (2021-11-02T16:24:37Z) - Quantum tomography explains quantum mechanics [0.0]
A suggestive notion for what constitutes a quantum detector leads to a logically impeccable definition of measurement.
The various forms of quantum tomography for quantum states, quantum detectors, quantum processes, and quantum instruments are discussed.
The new approach is closer to actual practice than the traditional foundations.
arXiv Detail & Related papers (2021-10-11T14:09:30Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.