論文の概要: Sketch and Patch: Efficient 3D Gaussian Representation for Man-Made Scenes
- arxiv url: http://arxiv.org/abs/2501.13045v1
- Date: Wed, 22 Jan 2025 17:52:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:28:40.688318
- Title: Sketch and Patch: Efficient 3D Gaussian Representation for Man-Made Scenes
- Title(参考訳): スケッチとパッチ:マンメイドシーンの効率的な3次元ガウス表現
- Authors: Yuang Shi, Simone Gasparini, Géraldine Morin, Chenggang Yang, Wei Tsang Ooi,
- Abstract要約: 3D Gaussian Splattingは、3Dシーンのレンダリングのための有望な表現として登場した。
我々はガウス人が伝統的な芸術技法に類似した異なる役割と特徴を示すことを観察する。
本研究では,ガウスを(i)シーン境界を定義するスケッチガウス,(ii)滑らかな領域をカバーするパッチガウスに分類する新しいハイブリッド表現を提案する。
- 参考スコア(独自算出の注目度): 3.9241077704550777
- License:
- Abstract: 3D Gaussian Splatting (3DGS) has emerged as a promising representation for photorealistic rendering of 3D scenes. However, its high storage requirements pose significant challenges for practical applications. We observe that Gaussians exhibit distinct roles and characteristics that are analogous to traditional artistic techniques -- Like how artists first sketch outlines before filling in broader areas with color, some Gaussians capture high-frequency features like edges and contours; While other Gaussians represent broader, smoother regions, that are analogous to broader brush strokes that add volume and depth to a painting. Based on this observation, we propose a novel hybrid representation that categorizes Gaussians into (i) Sketch Gaussians, which define scene boundaries, and (ii) Patch Gaussians, which cover smooth regions. Sketch Gaussians are efficiently encoded using parametric models, leveraging their geometric coherence, while Patch Gaussians undergo optimized pruning, retraining, and vector quantization to maintain volumetric consistency and storage efficiency. Our comprehensive evaluation across diverse indoor and outdoor scenes demonstrates that this structure-aware approach achieves up to 32.62% improvement in PSNR, 19.12% in SSIM, and 45.41% in LPIPS at equivalent model sizes, and correspondingly, for an indoor scene, our model maintains the visual quality with 2.3% of the original model size.
- Abstract(参考訳): 3Dガウススティング(3DGS)は、3Dシーンの写実的レンダリングの有望な表現として登場した。
しかし、その高いストレージ要件は、実用アプリケーションに重大な課題をもたらす。
ガウスが伝統的な芸術技法に類似した異なる役割と特徴を示すのを観察する。例えば、アーティストが色のある広い領域を埋める前にアウトラインをスケッチするのと同じように、一部のガウス人は縁や輪郭のような高周波の特徴を捉えている。
この観察に基づいて、ガウスを分類する新しいハイブリッド表現を提案する。
(i)シーン境界を定義するスケッチガウシアン、及び
(ii)滑らかな地域をカバーするパッチガウシアン。
スケッチ・ガウシアンはその幾何学的コヒーレンスを利用してパラメトリックモデルを用いて効率的に符号化され、パッチ・ガウシアンは体積整合性と記憶効率を維持するために最適化されたプルーニング、再訓練、ベクトル量子化を行う。
室内・屋外の多様な場面における総合的な評価の結果,PSNRは最大32.62%,SSIMは19.12%,LPIPSは45.41%,室内では2.3%の画質を維持した。
関連論文リスト
- G2SDF: Surface Reconstruction from Explicit Gaussians with Implicit SDFs [84.07233691641193]
G2SDFはニューラル暗黙の符号付き距離場をガウススプラッティングフレームワークに統合する新しいアプローチである。
G2SDFは, 3DGSの効率を維持しつつ, 従来よりも優れた品質を実現する。
論文 参考訳(メタデータ) (2024-11-25T20:07:07Z) - MeshGS: Adaptive Mesh-Aligned Gaussian Splatting for High-Quality Rendering [61.64903786502728]
本稿では,メッシュ表現を3次元ガウススプラットと統合し,再現された現実世界のシーンの高品質なレンダリングを実現する手法を提案する。
各ガウススプレートとメッシュ表面との距離を, 密接な束縛と緩い束縛の相違点として検討した。
提案手法は,2dB高いPSNRを達成し,メッシュベースのガウス分割法を1.3dBPSNRで上回った。
論文 参考訳(メタデータ) (2024-10-11T16:07:59Z) - GStex: Per-Primitive Texturing of 2D Gaussian Splatting for Decoupled Appearance and Geometry Modeling [11.91812502521729]
ガウススプラッティングは、ビュー合成とシーン再構成に優れた性能を示した。
各ガウス原始体は外観と幾何学の両方を符号化しているので、外見モデリングには多数のガウス原始体が必要である。
我々は,1つのガウス語でさえ外観の詳細を捉えられるように,パープリミティブな表現を採用することを提案する。
論文 参考訳(メタデータ) (2024-09-19T17:58:44Z) - Compact 3D Gaussian Splatting for Static and Dynamic Radiance Fields [13.729716867839509]
ハイパフォーマンスを維持しつつガウスの数を著しく削減する学習可能なマスク戦略を提案する。
さらに、格子型ニューラルネットワークを用いて、ビュー依存色をコンパクトかつ効果的に表現することを提案する。
我々の研究は、3Dシーン表現のための包括的なフレームワークを提供し、ハイパフォーマンス、高速トレーニング、コンパクト性、リアルタイムレンダリングを実現しています。
論文 参考訳(メタデータ) (2024-08-07T14:56:34Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
本研究では,視覚的忠実度と前景の細部を高い圧縮比で保持する原理的感度プルーニングスコアを提案する。
また,トレーニングパイプラインを変更することなく,事前訓練した任意の3D-GSモデルに適用可能な複数ラウンドプルーファインパイプラインを提案する。
論文 参考訳(メタデータ) (2024-06-14T17:53:55Z) - GaussianForest: Hierarchical-Hybrid 3D Gaussian Splatting for Compressed Scene Modeling [40.743135560583816]
本稿では,ハイブリッド3Dガウスの森として景観を階層的に表現するガウス・フォレスト・モデリング・フレームワークを紹介する。
実験により、ガウス・フォレストは同等の速度と品質を維持するだけでなく、圧縮速度が10倍を超えることが示されている。
論文 参考訳(メタデータ) (2024-06-13T02:41:11Z) - GaussianFormer: Scene as Gaussians for Vision-Based 3D Semantic Occupancy Prediction [70.65250036489128]
3Dのセマンティック占有予測は,周囲のシーンの3Dの微細な形状とセマンティックスを得ることを目的としている。
本稿では,3Dシーンを3Dセマンティック・ガウシアンで表現するオブジェクト中心表現を提案する。
GaussianFormerは17.8%から24.8%のメモリ消費しか持たない最先端のメソッドで同等のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-05-27T17:59:51Z) - EfficientGS: Streamlining Gaussian Splatting for Large-Scale High-Resolution Scene Representation [29.334665494061113]
能率GS」は3DGSを高解像度で大規模なシーンに最適化する高度なアプローチである。
3DGSの密度化過程を解析し,ガウスの過剰増殖領域を同定した。
本稿では,ガウス的増加を重要な冗長プリミティブに制限し,表現効率を向上する選択的戦略を提案する。
論文 参考訳(メタデータ) (2024-04-19T10:32:30Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES(Generalized Exponential Splatting)は、GEF(Generalized Exponential Function)を用いて3Dシーンをモデル化する斬新な表現である。
周波数変調損失の助けを借りて、GESは新規なビュー合成ベンチマークにおいて競合性能を達成する。
論文 参考訳(メタデータ) (2024-02-15T17:32:50Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2023-11-30T17:58:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。