論文の概要: RAG-Reward: Optimizing RAG with Reward Modeling and RLHF
- arxiv url: http://arxiv.org/abs/2501.13264v1
- Date: Wed, 22 Jan 2025 22:59:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:58:34.115325
- Title: RAG-Reward: Optimizing RAG with Reward Modeling and RLHF
- Title(参考訳): RAG-Reward: Reward ModelingとRLHFによるRAGの最適化
- Authors: Hanning Zhang, Juntong Song, Juno Zhu, Yuanhao Wu, Tong Zhang, Cheng Niu,
- Abstract要約: Retrieval-augmented Generation (RAG)は、関連知識と最新の知識でLarge Language Models (LLM)を強化する。
我々はtextbfRAG-Reward を導入した。これはtextithallucination-free, comprehensive, reliable, and efficient RAG を実現するために設計されたデータセットである。
我々は報酬モデルを訓練し、人間からのフィードバックで強化学習を適用し、RAGにおけるLLMの有効性を向上させる。
- 参考スコア(独自算出の注目度): 8.911260109659489
- License:
- Abstract: Retrieval-augmented generation (RAG) enhances Large Language Models (LLMs) with relevant and up-to-date knowledge, improving their ability to answer knowledge-intensive questions. It has been shown to enhance both generation quality and trustworthiness. While numerous works have focused on improving retrieval, generation, and evaluation, the role of reward models in reinforcement learning for optimizing RAG and establishing automated benchmarking pipelines remains underexplored. In this paper, we introduce \textbf{RAG-Reward}, a dataset designed to enable \textit{hallucination-free, comprehensive, reliable, and efficient RAG}. We define four key metrics for assessing generation quality and develop an automated annotation pipeline that leverages multiple LLMs to generate outputs across diverse RAG scenarios. GPT-4o is used to evaluate and construct preference data. Using \textbf{RAG-Reward}, we train reward models and apply reinforcement learning with human feedback (RLHF) to improve LLMs' effectiveness in RAG. Experimental results show that our reward model achieves state-of-the-art performance on a held-out test set, demonstrating both the effectiveness of our approach and the quality of our dataset. Furthermore, the improved generation quality of the trained policy model highlights the feasibility of using RLHF to enhance RAG pipelines.
- Abstract(参考訳): Retrieval-augmented Generation (RAG) は、Large Language Models (LLM) を関連知識と最新知識で強化し、知識集約的な質問に答える能力を向上させる。
世代的品質と信頼性の両方を高めることが示されている。
多くの研究が検索、生成、評価の改善に重点を置いているが、RAGの最適化と自動ベンチマークパイプラインの確立のための強化学習における報酬モデルの役割は未定である。
本稿では, <textit{hallucination-free, comprehensive, reliable, and efficient RAG} を実現するために設計されたデータセットである \textbf{RAG-Reward} を紹介する。
我々は、生成品質を評価するための4つの重要な指標を定義し、様々なRAGシナリオにまたがる出力を生成するために複数のLCMを利用する自動アノテーションパイプラインを開発する。
GPT-4oは嗜好データの評価と構築に使用される。
報奨モデルを用いて人間フィードバック(RLHF)による強化学習を適用し,RAGにおけるLLMの有効性を向上する。
実験結果から,提案手法の有効性とデータセットの品質の両立を実証し,提案手法の有効性を実証した。
さらに、トレーニングされたポリシーモデルの生成品質の向上は、RAGパイプラインを強化するためにRLHFを使用することの可能性を強調している。
関連論文リスト
- Reward-RAG: Enhancing RAG with Reward Driven Supervision [43.66966457772646]
本稿では、Reward-Driven Supervisionを通じて、Retrieval-Augmented Generation(RAG)モデルを強化するために設計された新しいアプローチであるReward-RAGを紹介する。
従来のRAG手法とは異なり,本手法ではCriticGPTを用いて検索情報を特定の領域に適応させ,専用報酬モデルを訓練する。
この報酬モデルは、RAGを微調整するための合成データセットを生成し、その出力を人間の好みとより密に一致させる。
論文 参考訳(メタデータ) (2024-10-03T15:26:50Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の開発において、急速に重要なパラダイムへと成長してきた。
本稿では,RAGシステムの信頼性を,事実性,堅牢性,公正性,透明性,説明責任,プライバシの6つの面で評価する統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-16T09:06:44Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) は、外部コンテキスト情報を大言語モデル(LLM)と統合し、事実の精度と妥当性を高めるパラダイムである。
SFR-RAG(SFR-RAG)について述べる。
また、複数の人気かつ多様なRAGベンチマークをコンパイルする新しい評価フレームワークであるConBenchについても紹介する。
論文 参考訳(メタデータ) (2024-09-16T01:08:18Z) - RAG Foundry: A Framework for Enhancing LLMs for Retrieval Augmented Generation [8.377398103067508]
我々は、RAGのユースケースのための大規模言語モデルを拡張するためのオープンソースのフレームワークであるRAG Foundryを紹介します。
RAG Foundryはデータ生成、トレーニング、推論、評価を単一のワークフローに統合する。
多様なRAG構成を持つLlama-3およびPhi-3モデルを拡張し,微調整することで,フレームワークの有効性を示す。
論文 参考訳(メタデータ) (2024-08-05T15:16:24Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に着目し, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
本稿では,ALMの信頼性とトレーサビリティ向上を目的とした,新たな自己推論フレームワークを提案する。
このフレームワークは、関連性を認識したプロセス、エビデンスを認識した選択プロセス、軌跡解析プロセスの3つのプロセスで自己推論軌道を構築することを含む。
提案手法の優位性を示すため,4つの公開データセットにまたがるフレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-07-29T09:05:10Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
本稿では,Large Language Models (LLMs) の推論能力向上を目的とした,反復的な選好学習プロセスによるアプローチを提案する。
我々は、MCTS(Monte Carlo Tree Search)を用いて好みデータを反復的に収集し、そのルックアヘッド機能を利用して、インスタンスレベルの報酬をよりきめ細かいステップレベルの信号に分解する。
提案アルゴリズムはDPO(Direct Preference Optimization)を用いて,新たに生成されたステップレベルの優先度データを用いてLCMポリシーを更新する。
論文 参考訳(メタデータ) (2024-05-01T11:10:24Z) - Retrieval-Augmented Generation for AI-Generated Content: A Survey [38.50754568320154]
このような課題に対処するためのパラダイムとして,レトリーバル拡張生成(RAG)が登場している。
RAGは情報検索プロセスを導入し、利用可能なデータストアから関連オブジェクトを検索することで生成プロセスを強化する。
本稿では,RAG手法をAIGCシナリオに統合する既存の取り組みを概観的にレビューする。
論文 参考訳(メタデータ) (2024-02-29T18:59:01Z) - A Critical Evaluation of AI Feedback for Aligning Large Language Models [60.42291111149438]
教師が既存のRLAIFパイプラインより優れていることを示す。
より一般的には、RLAIFの利得は、ベースモデルファミリ、テスト時間評価プロトコル、批判モデルによって大きく異なることが分かる。
論文 参考訳(メタデータ) (2024-02-19T18:53:54Z) - Reinforcement Replaces Supervision: Query focused Summarization using
Deep Reinforcement Learning [43.123290672073814]
クエリに基づいて文書から要約を生成するシステムを扱う。
Reinforcement Learning (RL) が自然言語生成のための Supervised Learning (SL) の一般化を提供するという知見に触発されて,本課題に RL ベースのアプローチを用いる。
我々は、ROUGE、BLEU、Semantic similarityといった様々な報酬信号に基づいて訓練された複数のポリシーグラディエントネットワークを開発する。
論文 参考訳(メタデータ) (2023-11-29T10:38:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。