Test-time Adversarial Defense with Opposite Adversarial Path and High Attack Time Cost
- URL: http://arxiv.org/abs/2410.16805v1
- Date: Tue, 22 Oct 2024 08:32:17 GMT
- Title: Test-time Adversarial Defense with Opposite Adversarial Path and High Attack Time Cost
- Authors: Cheng-Han Yeh, Kuanchun Yu, Chun-Shien Lu,
- Abstract summary: We investigate a new test-time adversarial defense method via diffusion-based recovery along opposite adversarial paths (OAPs)
We present a purifier that can be plugged into a pre-trained model to resist adversarial attacks.
- Score: 5.197034517903854
- License:
- Abstract: Deep learning models are known to be vulnerable to adversarial attacks by injecting sophisticated designed perturbations to input data. Training-time defenses still exhibit a significant performance gap between natural accuracy and robust accuracy. In this paper, we investigate a new test-time adversarial defense method via diffusion-based recovery along opposite adversarial paths (OAPs). We present a purifier that can be plugged into a pre-trained model to resist adversarial attacks. Different from prior arts, the key idea is excessive denoising or purification by integrating the opposite adversarial direction with reverse diffusion to push the input image further toward the opposite adversarial direction. For the first time, we also exemplify the pitfall of conducting AutoAttack (Rand) for diffusion-based defense methods. Through the lens of time complexity, we examine the trade-off between the effectiveness of adaptive attack and its computation complexity against our defense. Experimental evaluation along with time cost analysis verifies the effectiveness of the proposed method.
Related papers
- Fortify the Guardian, Not the Treasure: Resilient Adversarial Detectors [0.0]
An adaptive attack is one where the attacker is aware of the defenses and adapts their strategy accordingly.
Our proposed method leverages adversarial training to reinforce the ability to detect attacks, without compromising clean accuracy.
Experimental evaluations on the CIFAR-10 and SVHN datasets demonstrate that our proposed algorithm significantly improves a detector's ability to accurately identify adaptive adversarial attacks.
arXiv Detail & Related papers (2024-04-18T12:13:09Z) - Confidence-driven Sampling for Backdoor Attacks [49.72680157684523]
Backdoor attacks aim to surreptitiously insert malicious triggers into DNN models, granting unauthorized control during testing scenarios.
Existing methods lack robustness against defense strategies and predominantly focus on enhancing trigger stealthiness while randomly selecting poisoned samples.
We introduce a straightforward yet highly effective sampling methodology that leverages confidence scores. Specifically, it selects samples with lower confidence scores, significantly increasing the challenge for defenders in identifying and countering these attacks.
arXiv Detail & Related papers (2023-10-08T18:57:36Z) - DIFFender: Diffusion-Based Adversarial Defense against Patch Attacks [34.86098237949214]
Adversarial attacks, particularly patch attacks, pose significant threats to the robustness and reliability of deep learning models.
This paper introduces DIFFender, a novel defense framework that harnesses the capabilities of a text-guided diffusion model to combat patch attacks.
DIFFender integrates dual tasks of patch localization and restoration within a single diffusion model framework.
arXiv Detail & Related papers (2023-06-15T13:33:27Z) - Guidance Through Surrogate: Towards a Generic Diagnostic Attack [101.36906370355435]
We develop a guided mechanism to avoid local minima during attack optimization, leading to a novel attack dubbed Guided Projected Gradient Attack (G-PGA)
Our modified attack does not require random restarts, large number of attack iterations or search for an optimal step-size.
More than an effective attack, G-PGA can be used as a diagnostic tool to reveal elusive robustness due to gradient masking in adversarial defenses.
arXiv Detail & Related papers (2022-12-30T18:45:23Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
We propose to explore adversarial examples and attack detection on reinforcement learning-based interactive recommendation systems.
We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors.
Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data.
arXiv Detail & Related papers (2021-12-02T04:12:24Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - TREATED:Towards Universal Defense against Textual Adversarial Attacks [28.454310179377302]
We propose TREATED, a universal adversarial detection method that can defend against attacks of various perturbation levels without making any assumptions.
Extensive experiments on three competitive neural networks and two widely used datasets show that our method achieves better detection performance than baselines.
arXiv Detail & Related papers (2021-09-13T03:31:20Z) - Improving the Adversarial Robustness for Speaker Verification by Self-Supervised Learning [95.60856995067083]
This work is among the first to perform adversarial defense for ASV without knowing the specific attack algorithms.
We propose to perform adversarial defense from two perspectives: 1) adversarial perturbation purification and 2) adversarial perturbation detection.
Experimental results show that our detection module effectively shields the ASV by detecting adversarial samples with an accuracy of around 80%.
arXiv Detail & Related papers (2021-06-01T07:10:54Z) - Guided Adversarial Attack for Evaluating and Enhancing Adversarial
Defenses [59.58128343334556]
We introduce a relaxation term to the standard loss, that finds more suitable gradient-directions, increases attack efficacy and leads to more efficient adversarial training.
We propose Guided Adversarial Margin Attack (GAMA), which utilizes function mapping of the clean image to guide the generation of adversaries.
We also propose Guided Adversarial Training (GAT), which achieves state-of-the-art performance amongst single-step defenses.
arXiv Detail & Related papers (2020-11-30T16:39:39Z) - Improving the affordability of robustness training for DNNs [11.971637253035107]
We show that the initial phase of adversarial training is redundant and can be replaced with natural training which significantly improves the computational efficiency.
We show that our proposed method can reduce the training time by a factor of up to 2.5 with comparable or better model test accuracy and generalization on various strengths of adversarial attacks.
arXiv Detail & Related papers (2020-02-11T07:29:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.