Rethinking Edge Detection through Perceptual Asymmetry: The SWBCE Loss
- URL: http://arxiv.org/abs/2501.13365v2
- Date: Sun, 25 May 2025 10:25:44 GMT
- Title: Rethinking Edge Detection through Perceptual Asymmetry: The SWBCE Loss
- Authors: Hao Shu,
- Abstract summary: We propose the Symmetrization Weighted Binary Cross-Entropy (SWBCE) loss function.<n>By balancing label-guided and prediction-guided learning, SWBCE maintains high edge recall while effectively suppressing false positives.<n>These findings underscore the effectiveness of SWBCE for high-quality edge prediction and its potential applicability to related vision tasks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Edge detection (ED) is a fundamental component in many computer vision tasks, yet achieving both high quantitative accuracy and perceptual quality remains a significant challenge. In this paper, we propose the Symmetrization Weighted Binary Cross-Entropy (SWBCE) loss function, a novel approach that addresses this issue by leveraging the inherent asymmetry in human edge perception, where edge decisions require stronger justification than non-edge ones. By balancing label-guided and prediction-guided learning, SWBCE maintains high edge recall while effectively suppressing false positives. Extensive experiments across multiple datasets and baseline models, along with comparisons to prior loss functions, demonstrate that our method consistently improves both the quantitative metrics and perceptual quality of ED results. These findings underscore the effectiveness of SWBCE for high-quality edge prediction and its potential applicability to related vision tasks.
Related papers
- EyeSeg: An Uncertainty-Aware Eye Segmentation Framework for AR/VR [58.33693755009173]
EyeSeg is an uncertainty-aware eye segmentation framework for augmented reality (AR) and virtual reality (VR)<n>We show that EyeSeg achieves segmentation improvements of MIoU, E1, F1, and ACC surpassing previous approaches.
arXiv Detail & Related papers (2025-07-13T14:33:10Z) - Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection [71.92083784393418]
Inference-time methods such as Best-of-N (BON) sampling offer a simple yet effective alternative to improve performance.
We propose Iterative Agent Decoding (IAD) which combines iterative refinement with dynamic candidate evaluation and selection guided by a verifier.
arXiv Detail & Related papers (2025-04-02T17:40:47Z) - Pixel-Wise Feature Selection for Perceptual Edge Detection without post-processing [0.0]
This paper proposes a novel feature selection paradigm for deep networks that facilitates the differential selection of features and can be seamlessly integrated into existing ED models.<n>By incorporating this additional structure, the performance of conventional ED models is substantially enhanced without post-processing, while simultaneously enhancing the perceptual quality of the predictions.
arXiv Detail & Related papers (2025-01-05T13:28:37Z) - Adversarial Robustness Overestimation and Instability in TRADES [4.063518154926961]
TRADES sometimes yields disproportionately high PGD validation accuracy compared to the AutoAttack testing accuracy in the multiclass classification task.
This discrepancy highlights a significant overestimation of robustness for these instances, potentially linked to gradient masking.
arXiv Detail & Related papers (2024-10-10T07:32:40Z) - UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation [93.38604803625294]
We present UncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG)
We use Signal-to-Noise Ratio (SNR)-based span uncertainty to estimate similarity between text chunks.
UncertaintyRAG outperforms baselines by 2.03% on LLaMA-2-7B, achieving state-of-the-art results.
arXiv Detail & Related papers (2024-10-03T17:39:38Z) - A Simple and Generalist Approach for Panoptic Segmentation [57.94892855772925]
Generalist vision models aim for one and the same architecture for a variety of vision tasks.
While such shared architecture may seem attractive, generalist models tend to be outperformed by their bespoken counterparts.
We address this problem by introducing two key contributions, without compromising the desirable properties of generalist models.
arXiv Detail & Related papers (2024-08-29T13:02:12Z) - Zero-Shot Embeddings Inform Learning and Forgetting with Vision-Language Encoders [6.7181844004432385]
The Inter-Intra Modal Measure (IIMM) functions as a strong predictor of performance changes with fine-tuning.
Fine-tuning on tasks with higher IIMM scores produces greater in-domain performance gains but also induces more severe out-of-domain performance degradation.
With only a single forward pass of the target data, practitioners can leverage this key insight to evaluate the degree to which a model can be expected to improve following fine-tuning.
arXiv Detail & Related papers (2024-07-22T15:35:09Z) - Uncertainty Quantification for Bird's Eye View Semantic Segmentation: Methods and Benchmarks [10.193504550494486]
This paper introduces a benchmark for predictive uncertainty quantification in BEV segmentation.
It focuses on the effectiveness of predicted uncertainty in identifying misclassified and out-of-distribution pixels, as well as calibration.
We propose the Uncertainty-Focal-Cross-Entropy loss, designed for highly imbalanced data, which consistently improves the segmentation quality and calibration.
arXiv Detail & Related papers (2024-05-31T16:32:46Z) - HANet: A Hierarchical Attention Network for Change Detection With Bitemporal Very-High-Resolution Remote Sensing Images [6.890268321645873]
We propose a progressive foreground-balanced sampling strategy on the basis of not adding change information.
This strategy helps the model accurately learn the features of the changed pixels during the early training process.
We also design a discriminative Siamese network, hierarchical attention network (HANet), which can integrate multiscale features and refine detailed features.
arXiv Detail & Related papers (2024-04-14T08:01:27Z) - Produce Once, Utilize Twice for Anomaly Detection [6.501323305130114]
We derive POUTA, which improves both the accuracy and efficiency by reusing the discriminant information potential in the reconstructive network.
POUTA achieves better performance than the state-of-the-art few-shot anomaly detection methods without any special design.
arXiv Detail & Related papers (2023-12-20T10:49:49Z) - Revisiting Cephalometric Landmark Detection from the view of Human Pose
Estimation with Lightweight Super-Resolution Head [11.40242574405714]
We develop a benchmark based on the well-established human pose estimation (HPE) known as MMPose.
We introduce an upscaling design within the framework to further enhance performance.
In the MICCAI CLDetection2023 challenge, our method achieves 1st place ranking on three metrics and 3rd place on the remaining one.
arXiv Detail & Related papers (2023-09-29T11:15:39Z) - Practical Edge Detection via Robust Collaborative Learning [11.176517889212015]
Edge detection is a core component in a wide range of visionoriented tasks.
To achieve the goal, two key issues should be concerned.
How to mitigate deep edge models from inefficient pre-trained backbones.
How to liberate the negative influence from noisy or even wrong labels in training data.
arXiv Detail & Related papers (2023-08-27T12:12:27Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - U-CE: Uncertainty-aware Cross-Entropy for Semantic Segmentation [11.099838952805325]
We present a novel Uncertainty-aware Cross-Entropy loss (U-CE) that incorporates dynamic predictive uncertainties into the training process by pixel-wise weighting of the well-known cross-entropy loss (CE)
We demonstrate the superiority of U-CE over regular CE training on two benchmark datasets, Cityscapes and ACDC, using two common backbone architectures, ResNet-18 and ResNet-101.
arXiv Detail & Related papers (2023-07-19T12:41:54Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Monotonicity and Double Descent in Uncertainty Estimation with Gaussian
Processes [52.92110730286403]
It is commonly believed that the marginal likelihood should be reminiscent of cross-validation metrics and that both should deteriorate with larger input dimensions.
We prove that by tuning hyper parameters, the performance, as measured by the marginal likelihood, improves monotonically with the input dimension.
We also prove that cross-validation metrics exhibit qualitatively different behavior that is characteristic of double descent.
arXiv Detail & Related papers (2022-10-14T08:09:33Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - Cross Learning in Deep Q-Networks [82.20059754270302]
We propose a novel cross Q-learning algorithm, aim at alleviating the well-known overestimation problem in value-based reinforcement learning methods.
Our algorithm builds on double Q-learning, by maintaining a set of parallel models and estimate the Q-value based on a randomly selected network.
arXiv Detail & Related papers (2020-09-29T04:58:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.