Wasserstein-regularized Conformal Prediction under General Distribution Shift
- URL: http://arxiv.org/abs/2501.13430v1
- Date: Thu, 23 Jan 2025 07:29:44 GMT
- Title: Wasserstein-regularized Conformal Prediction under General Distribution Shift
- Authors: Rui Xu, Chao Chen, Yue Sun, Parvathinathan Venkitasubramaniam, Sihong Xie,
- Abstract summary: Conformal prediction yields a prediction set with guaranteed $1-alpha$ coverage of the true target under the i.i.d. assumption.<n>We propose a Wasserstein distance-based upper bound of the coverage gap and analyze the bound using probability measure pushforwards.<n>We exploit the separation to design an algorithm based on importance weighting and regularized representation learning (WR-CP) to reduce the Wasserstein bound with a finite-sample error bound.
- Score: 21.29977879431466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conformal prediction yields a prediction set with guaranteed $1-\alpha$ coverage of the true target under the i.i.d. assumption, which may not hold and lead to a gap between $1-\alpha$ and the actual coverage. Prior studies bound the gap using total variation distance, which cannot identify the gap changes under distribution shift at a given $\alpha$. Besides, existing methods are mostly limited to covariate shift,while general joint distribution shifts are more common in practice but less researched.In response, we first propose a Wasserstein distance-based upper bound of the coverage gap and analyze the bound using probability measure pushforwards between the shifted joint data and conformal score distributions, enabling a separation of the effect of covariate and concept shifts over the coverage gap. We exploit the separation to design an algorithm based on importance weighting and regularized representation learning (WR-CP) to reduce the Wasserstein bound with a finite-sample error bound.WR-CP achieves a controllable balance between conformal prediction accuracy and efficiency. Experiments on six datasets prove that WR-CP can reduce coverage gaps to $3.1\%$ across different confidence levels and outputs prediction sets 38$\%$ smaller than the worst-case approach on average.
Related papers
- Improving the statistical efficiency of cross-conformal prediction [29.43493007296859]
Vovk introduced cross-conformal prediction, a modification of split conformal designed to improve the width of prediction sets.
We propose new variants of both methods that yield smaller prediction sets without compromising the latter theoretical guarantee.
arXiv Detail & Related papers (2025-03-03T13:07:28Z) - Semiparametric conformal prediction [79.6147286161434]
We construct a conformal prediction set accounting for the joint correlation structure of the vector-valued non-conformity scores.
We flexibly estimate the joint cumulative distribution function (CDF) of the scores.
Our method yields desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - Gradual Domain Adaptation via Manifold-Constrained Distributionally Robust Optimization [0.4732176352681218]
This paper addresses the challenge of gradual domain adaptation within a class of manifold-constrained data distributions.
We propose a methodology rooted in Distributionally Robust Optimization (DRO) with an adaptive Wasserstein radius.
Our bounds rely on a newly introduced it compatibility measure, which fully characterizes the error propagation dynamics along the sequence.
arXiv Detail & Related papers (2024-10-17T22:07:25Z) - Conformal Thresholded Intervals for Efficient Regression [9.559062601251464]
Conformal Thresholded Intervals (CTI) is a novel conformal regression method that aims to produce the smallest possible prediction set with guaranteed coverage.<n>CTI constructs prediction sets by thresholding the estimated conditional interquantile intervals based on their length.<n>CTI achieves superior performance compared to state-of-the-art conformal regression methods across various datasets.
arXiv Detail & Related papers (2024-07-19T17:47:08Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Robust Conformal Prediction under Distribution Shift via Physics-Informed Structural Causal Model [24.58531056536442]
Conformal prediction (CP) handles uncertainty by predicting a set on a test input.
This coverage can be guaranteed on test data even if the marginal distributions $P_X$ differ between calibration and test datasets.
We propose a physics-informed structural causal model (PI-SCM) to reduce the upper bound.
arXiv Detail & Related papers (2024-03-22T08:13:33Z) - Equal Opportunity of Coverage in Fair Regression [50.76908018786335]
We study fair machine learning (ML) under predictive uncertainty to enable reliable and trustworthy decision-making.
We propose Equal Opportunity of Coverage (EOC) that aims to achieve two properties: (1) coverage rates for different groups with similar outcomes are close, and (2) the coverage rate for the entire population remains at a predetermined level.
arXiv Detail & Related papers (2023-11-03T21:19:59Z) - TIC-TAC: A Framework for Improved Covariance Estimation in Deep Heteroscedastic Regression [109.69084997173196]
Deepscedastic regression involves jointly optimizing the mean and covariance of the predicted distribution using the negative log-likelihood.
Recent works show that this may result in sub-optimal convergence due to the challenges associated with covariance estimation.
We study two questions: (1) Does the predicted covariance truly capture the randomness of the predicted mean?
Our results show that not only does TIC accurately learn the covariance, it additionally facilitates an improved convergence of the negative log-likelihood.
arXiv Detail & Related papers (2023-10-29T09:54:03Z) - Distributional Shift-Aware Off-Policy Interval Estimation: A Unified
Error Quantification Framework [8.572441599469597]
We study high-confidence off-policy evaluation in the context of infinite-horizon Markov decision processes.
The objective is to establish a confidence interval (CI) for the target policy value using only offline data pre-collected from unknown behavior policies.
We show that our algorithm is sample-efficient, error-robust, and provably convergent even in non-linear function approximation settings.
arXiv Detail & Related papers (2023-09-23T06:35:44Z) - Robust computation of optimal transport by $\beta$-potential
regularization [79.24513412588745]
Optimal transport (OT) has become a widely used tool in the machine learning field to measure the discrepancy between probability distributions.
We propose regularizing OT with the beta-potential term associated with the so-called $beta$-divergence.
We experimentally demonstrate that the transport matrix computed with our algorithm helps estimate a probability distribution robustly even in the presence of outliers.
arXiv Detail & Related papers (2022-12-26T18:37:28Z) - Distribution-Free Finite-Sample Guarantees and Split Conformal
Prediction [0.0]
split conformal prediction represents a promising avenue to obtain finite-sample guarantees under minimal distribution-free assumptions.
We highlight the connection between split conformal prediction and classical tolerance predictors developed in the 1940s.
arXiv Detail & Related papers (2022-10-26T14:12:24Z) - A Unified Framework for Multi-distribution Density Ratio Estimation [101.67420298343512]
Binary density ratio estimation (DRE) provides the foundation for many state-of-the-art machine learning algorithms.
We develop a general framework from the perspective of Bregman minimization divergence.
We show that our framework leads to methods that strictly generalize their counterparts in binary DRE.
arXiv Detail & Related papers (2021-12-07T01:23:20Z) - Log-Likelihood Ratio Minimizing Flows: Towards Robust and Quantifiable
Neural Distribution Alignment [52.02794488304448]
We propose a new distribution alignment method based on a log-likelihood ratio statistic and normalizing flows.
We experimentally verify that minimizing the resulting objective results in domain alignment that preserves the local structure of input domains.
arXiv Detail & Related papers (2020-03-26T22:10:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.