論文の概要: Towards a Theory of AI Personhood
- arxiv url: http://arxiv.org/abs/2501.13533v1
- Date: Thu, 23 Jan 2025 10:31:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:59:02.054318
- Title: Towards a Theory of AI Personhood
- Title(参考訳): AI人格論へ向けて
- Authors: Francis Rhys Ward,
- Abstract要約: 我々はAIの人格化に必要な条件を概説する。
もしAIシステムが人間と見なせるなら、AIアライメントの典型的な枠組みは不完全かもしれない。
- 参考スコア(独自算出の注目度): 1.6317061277457001
- License:
- Abstract: I am a person and so are you. Philosophically we sometimes grant personhood to non-human animals, and entities such as sovereign states or corporations can legally be considered persons. But when, if ever, should we ascribe personhood to AI systems? In this paper, we outline necessary conditions for AI personhood, focusing on agency, theory-of-mind, and self-awareness. We discuss evidence from the machine learning literature regarding the extent to which contemporary AI systems, such as language models, satisfy these conditions, finding the evidence surprisingly inconclusive. If AI systems can be considered persons, then typical framings of AI alignment may be incomplete. Whereas agency has been discussed at length in the literature, other aspects of personhood have been relatively neglected. AI agents are often assumed to pursue fixed goals, but AI persons may be self-aware enough to reflect on their aims, values, and positions in the world and thereby induce their goals to change. We highlight open research directions to advance the understanding of AI personhood and its relevance to alignment. Finally, we reflect on the ethical considerations surrounding the treatment of AI systems. If AI systems are persons, then seeking control and alignment may be ethically untenable.
- Abstract(参考訳): 私は人なので、あなたもそうです。
哲学的には、人間以外の動物に人格を付与することがあるが、主権国家や企業のような団体は法的に人格とみなすことができる。
しかし、もしそうなら、いつAIシステムに人格を割り当てるべきなのか?
本稿では,AIの人格化に必要な条件について概説する。
言語モデルなどの現代AIシステムがこれらの条件を満たす程度について、機械学習文献から証拠を議論し、驚くほど不確定な証拠を見つける。
もしAIシステムが人間と見なせるなら、AIアライメントの典型的な枠組みは不完全かもしれない。
文献では機関が長く議論されてきたが、人格の他の側面は比較的無視されてきた。
AIエージェントは、しばしば固定された目標を追求すると仮定されるが、AI担当者は、世界の目標、価値観、ポジションを反映して、変化するための目標を誘導するのに十分な自己認識を持っているかもしれない。
我々は、AIの人格理解を促進するためのオープンな研究の方向性と、そのアライメントとの関連について強調する。
最後に,AIシステムの扱いに関する倫理的考察を考察する。
AIシステムが人ならば、コントロールとアライメントを求めることは倫理的に不可能かもしれない。
関連論文リスト
- Taking AI Welfare Seriously [0.5617572524191751]
我々は、近い将来、一部のAIシステムが意識的または堅牢に作用する可能性があると論じている。
これは近い将来の問題であり、AI企業や他のアクターはそれを真剣に取り始める責任がある。
論文 参考訳(メタデータ) (2024-11-04T17:57:57Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Rolling in the deep of cognitive and AI biases [1.556153237434314]
我々は、AIが設計、開発、デプロイされる状況とは切り離せない社会技術システムとして理解する必要があると論じる。
我々は、人間の認知バイアスがAIフェアネスの概観の中核となる急進的な新しい方法論に従うことで、この問題に対処する。
我々は、人間にAIバイアスを正当化する新しいマッピングを導入し、関連する公正度と相互依存を検出する。
論文 参考訳(メタデータ) (2024-07-30T21:34:04Z) - Intent-aligned AI systems deplete human agency: the need for agency
foundations research in AI safety [2.3572498744567127]
人間の意図の一致は、安全なAIシステムには不十分である、と我々は主張する。
我々は、人類の長期的機関の保存がより堅牢な標準であると論じている。
論文 参考訳(メタデータ) (2023-05-30T17:14:01Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Aligning Artificial Intelligence with Humans through Public Policy [0.0]
このエッセイは、下流のタスクに活用可能なポリシーデータの構造を学ぶAIの研究の概要を概説する。
これはAIとポリシーの"理解"フェーズを表していると私たちは考えていますが、AIを整合させるために人的価値の重要な源としてポリシーを活用するには、"理解"ポリシーが必要です。
論文 参考訳(メタデータ) (2022-06-25T21:31:14Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
ベンチマークは、人工知能(AI)研究の技術的進歩を測定するための基盤とみられている。
AIの顕著な研究領域は倫理であり、現在、ベンチマークのセットも、AIシステムの「倫理性」を測定する一般的な方法もない。
我々は、現在と将来のAIシステムのアクションを考えるとき、倫理よりも「価値」について話す方が理にかなっていると論じる。
論文 参考訳(メタデータ) (2022-04-11T14:36:39Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Some Critical and Ethical Perspectives on the Empirical Turn of AI
Interpretability [0.0]
我々は、現在人工知能開発で直面している2つの問題、すなわち、倫理の欠如とAI決定の解釈可能性の欠如について考察する。
実験により,説明書作成の実証的かつリベラルな転換は,否定力の低いAI説明を選択する傾向にあることを示した。
我々は、倫理的AIの今後の発展のためのシナリオとして、より外部規制やAI説明の自由化の2つを提案する。
論文 参考訳(メタデータ) (2021-09-20T14:41:50Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。