論文の概要: Agency in Artificial Intelligence Systems
- arxiv url: http://arxiv.org/abs/2502.10434v1
- Date: Sun, 09 Feb 2025 02:21:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-02 03:23:11.260781
- Title: Agency in Artificial Intelligence Systems
- Title(参考訳): 人工知能システムにおけるエージェンシー
- Authors: Parashar Das,
- Abstract要約: 人工知能(AI)研究の現在の発展が、知覚的なAIシステムに繋がる、という一般的な懸念がある。
しかし、なぜ知的なAIシステムが人類に利益をもたらすことができないのか?
私は、AIシステムが我々の社会に対して利他的または悪意ある態度を発達させるのか、その機関の性質は何かと尋ねる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: There is a general concern that present developments in artificial intelligence (AI) research will lead to sentient AI systems, and these may pose an existential threat to humanity. But why cannot sentient AI systems benefit humanity instead? This paper endeavours to put this question in a tractable manner. I ask whether a putative AI system will develop an altruistic or a malicious disposition towards our society, or what would be the nature of its agency? Given that AI systems are being developed into formidable problem solvers, we can reasonably expect these systems to preferentially take on conscious aspects of human problem solving. I identify the relevant phenomenal aspects of agency in human problem solving. The functional aspects of conscious agency can be monitored using tools provided by functionalist theories of consciousness. A recent expert report (Butlin et al. 2023) has identified functionalist indicators of agency based on these theories. I show how to use the Integrated Information Theory (IIT) of consciousness, to monitor the phenomenal nature of this agency. If we are able to monitor the agency of AI systems as they develop, then we can dissuade them from becoming a menace to society while encouraging them to be an aid.
- Abstract(参考訳): 人工知能(AI)研究の現在の発展が、知覚的なAIシステムに繋がるのではないかという一般的な懸念がある。
しかし、なぜ知的なAIシステムが人類に利益をもたらすことができないのか?
この論文は、この問題を難解なものにしようと努力している。
私は、AIシステムが我々の社会に対して利他的または悪意ある態度を発達させるのか、その機関の性質は何かと尋ねる。
AIシステムが恐るべき問題解決者へと発展しつつあることを考えると、これらのシステムは人間の問題解決の意識的な側面を優先的に取り込むことを合理的に期待できる。
人間の問題解決におけるエージェンシーの現象的側面を特定します。
意識エージェントの機能的側面は、意識の機能主義理論によって提供されるツールを用いて監視することができる。
最近の専門家報告(Butlin et al 2023)では、これらの理論に基づいて、エージェンシーの機能的指標が特定されている。
本稿では、意識統合情報理論(IIT)を用いて、この機関の異常な性質をモニタリングする方法について述べる。
開発するAIシステムのエージェンシーを監視できれば、社会への脅威になるのを防ぎつつ、支援を奨励することができる。
関連論文リスト
- Towards a Theory of AI Personhood [1.6317061277457001]
我々はAIの人格化に必要な条件を概説する。
もしAIシステムが人間と見なせるなら、AIアライメントの典型的な枠組みは不完全かもしれない。
論文 参考訳(メタデータ) (2025-01-23T10:31:26Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Taking AI Welfare Seriously [0.5617572524191751]
我々は、近い将来、一部のAIシステムが意識的または堅牢に作用する可能性があると論じている。
これは近い将来の問題であり、AI企業や他のアクターはそれを真剣に取り始める責任がある。
論文 参考訳(メタデータ) (2024-11-04T17:57:57Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Rolling in the deep of cognitive and AI biases [1.556153237434314]
我々は、AIが設計、開発、デプロイされる状況とは切り離せない社会技術システムとして理解する必要があると論じる。
我々は、人間の認知バイアスがAIフェアネスの概観の中核となる急進的な新しい方法論に従うことで、この問題に対処する。
我々は、人間にAIバイアスを正当化する新しいマッピングを導入し、関連する公正度と相互依存を検出する。
論文 参考訳(メタデータ) (2024-07-30T21:34:04Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Intent-aligned AI systems deplete human agency: the need for agency
foundations research in AI safety [2.3572498744567127]
人間の意図の一致は、安全なAIシステムには不十分である、と我々は主張する。
我々は、人類の長期的機関の保存がより堅牢な標準であると論じている。
論文 参考訳(メタデータ) (2023-05-30T17:14:01Z) - BIASeD: Bringing Irrationality into Automated System Design [12.754146668390828]
我々は、人間と機械のコラボレーションの未来は、人間の認知バイアスをモデル化し、理解し、おそらく複製するAIシステムの開発を必要とすると主張している。
我々は、AIシステムの観点から既存の認知バイアスを分類し、3つの幅広い関心領域を特定し、私たちのバイアスをよりよく理解するAIシステムの設計のための研究の方向性を概説する。
論文 参考訳(メタデータ) (2022-10-01T02:52:38Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。