論文の概要: Variational U-Net with Local Alignment for Joint Tumor Extraction and Registration (VALOR-Net) of Breast MRI Data Acquired at Two Different Field Strengths
- arxiv url: http://arxiv.org/abs/2501.13690v1
- Date: Thu, 23 Jan 2025 14:15:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:55:59.207580
- Title: Variational U-Net with Local Alignment for Joint Tumor Extraction and Registration (VALOR-Net) of Breast MRI Data Acquired at Two Different Field Strengths
- Title(参考訳): 異なる磁場強度で取得した乳房MRIデータの関節腫瘍抽出・登録(VALOR-Net)のための局所アライメント付き変異型U-Net
- Authors: Muhammad Shahkar Khan, Haider Ali, Laura Villazan Garcia, Noor Badshah, Siegfried Trattnig, Florian Schwarzhans, Ramona Woitek, Olgica Zaric,
- Abstract要約: 多次元乳房MRIは腫瘍の診断、特徴付け、治療計画を改善する可能性がある。
3Tや7Tのような異なるフィールド強度で取得された画像の正確なアライメントとデライン化は、依然として困難な研究課題である。
提案手法は, 異なる磁場強度で取得したMRIデータの関節腫瘍セグメント化とMRIデータの登録を可能とすることができる。
- 参考スコア(独自算出の注目度): 0.43163184307789293
- License:
- Abstract: Background: Multiparametric breast MRI data might improve tumor diagnostics, characterization, and treatment planning. Accurate alignment and delineation of images acquired at different field strengths such as 3T and 7T, remain challenging research tasks. Purpose: To address alignment challenges and enable consistent tumor segmentation across different MRI field strengths. Study type: Retrospective. Subjects: Nine female subjects with breast tumors were involved: six histologically proven invasive ductal carcinomas (IDC) and three fibroadenomas. Field strength/sequence: Imaging was performed at 3T and 7T scanners using post-contrast T1-weighted three-dimensional time-resolved angiography with stochastic trajectories (TWIST) sequence. Assessments: The method's performance for joint image registration and tumor segmentation was evaluated using several quantitative metrics, including signal-to-noise ratio (PSNR), structural similarity index (SSIM), normalized cross-correlation (NCC), Dice coefficient, F1 score, and relative sum of squared differences (rel SSD). Statistical tests: The Pearson correlation coefficient was used to test the relationship between the registration and segmentation metrics. Results: When calculated for each subject individually, the PSNR was in a range from 27.5 to 34.5 dB, and the SSIM was from 82.6 to 92.8%. The model achieved an NCC from 96.4 to 99.3% and a Dice coefficient of 62.9 to 95.3%. The F1 score was between 55.4 and 93.2% and the rel SSD was in the range of 2.0 and 7.5%. The segmentation metrics Dice and F1 Score are highly correlated (0.995), while a moderate correlation between NCC and SSIM (0.681) was found for registration. Data conclusion: Initial results demonstrate that the proposed method may be feasible in providing joint tumor segmentation and registration of MRI data acquired at different field strengths.
- Abstract(参考訳): 背景: マルチパラメトリック乳房MRIは, 腫瘍診断, キャラクタリゼーション, 治療計画を改善する可能性がある。
3Tや7Tのような異なるフィールド強度で取得された画像の正確なアライメントとデライン化は、依然として困難な研究課題である。
目的:アライメントの課題に対処し,MRIの異なる磁場強度で一貫した腫瘍セグメンテーションを可能にする。
研究タイプ:ふりかえり。
対象: 乳腺腫瘍9例, 組織学的に証明された浸潤性胆管癌6例, 線維腺腫3例であった。
フィールド強度/シーケンス: 造影T1強調3次元経時的血管造影(TWIST)を用いた3Tおよび7Tスキャナーで画像診断を行った。
評価: 信号対雑音比 (PSNR) , 構造類似度指数 (SSIM) , 正規化相互相関 (NCC) , ディス係数, F1スコア, 正方形差の相対和 (rel SSD) などの測定値を用いて, 関節画像の登録と腫瘍セグメンテーションの評価を行った。
統計的検査: ピアソン相関係数を用いて, 登録値とセグメンテーション値の関係を調べた。
結果: 各被験者について個別に算出した場合,PSNRは27.5~34.5dB,SSIMは82.6~92.8%であった。
NCCは96.4から99.3%、Dice係数は62.9から95.3%に達した。
F1スコアは55.4から93.2%、rel SSDは2.0から7.5%であった。
Dice と F1 Score のセグメンテーションは高い相関関係 (0.995) を示し, NCC と SSIM の中間相関 (0.681) が認められた。
データ結論: 提案手法は, 異なる磁場強度で取得したMRIデータの関節腫瘍分割と登録を行う上で, 有効である可能性が示唆された。
関連論文リスト
- Multi-centric AI Model for Unruptured Intracranial Aneurysm Detection and Volumetric Segmentation in 3D TOF-MRI [6.397650339311053]
我々は3DTOF-MRIで未破裂脳動脈瘤(UICA)の検出と分節を併用したオープンソースのnnU-NetベースのAIモデルを開発した。
4つの異なるトレーニングデータセットが作成され、nnU-Netフレームワークがモデル開発に使用された。
一次モデルは85%の感度と0.23FP/ケースレートを示し、ADAM-challengeの勝者(61%)と、ADAMデータでトレーニングされたnnU-Net(51%)を感度で上回った。
論文 参考訳(メタデータ) (2024-08-30T08:57:04Z) - Deep learning-based brain segmentation model performance validation with clinical radiotherapy CT [0.0]
本研究はCT(Computed Tomography)におけるSynthSegのロバスト脳セグメンテーションモデルを検証する。
The Freesurfer Imaging SuiteのコンポーネントであるSynthSegモデルを用いて、CTとMRIから脳のセグメンテーションを得た。
総合的なQCスコアに基づいてCTの性能はMRIより低いが,QCベースの閾値設定では低品質なセグメンテーションを除外できる。
論文 参考訳(メタデータ) (2024-06-25T09:56:30Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
本研究では,TotalSegmentatorをMR画像に拡張した。
このデータセットに基づいてnnU-Netセグメンテーションアルゴリズムを訓練し、類似度係数(Dice)を計算し、モデルの性能を評価した。
このモデルは、他の2つの公開セグメンテーションモデル(Dice score 0.824 vs 0.762; p0.001 and 0.762 versus 0.542; p)を大きく上回った。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.586530244472655]
我々はBraTS 2023の頭蓋内髄膜腫チャレンジの設計と結果について述べる。
BraTS髄膜腫チャレンジ(BraTS Meningioma Challenge)は、髄膜腫に焦点を当てた以前のBraTSグリオーマチャレンジとは異なる。
上層部は腫瘍,腫瘍コア,腫瘍全体の拡張のために0.976,0.976,0.964の病変中央値類似係数(DSC)を有していた。
論文 参考訳(メタデータ) (2024-05-16T03:23:57Z) - A Federated Learning Framework for Stenosis Detection [70.27581181445329]
本研究は,冠動脈造影画像(CA)の狭窄検出におけるFL(Federated Learning)の使用について検討した。
アンコナのOspedale Riuniti(イタリア)で取得した200人の患者1219枚の画像を含む2施設の異種データセットについて検討した。
データセット2には、文献で利用可能な90人の患者からの7492のシーケンシャルな画像が含まれている。
論文 参考訳(メタデータ) (2023-10-30T11:13:40Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Accurate Prostate Cancer Detection and Segmentation on Biparametric MRI
using Non-local Mask R-CNN with Histopathological Ground Truth [0.0]
我々は,bp-MRIにおける前立腺内病変の検出とセグメンテーションを改善するため,ディープラーニングモデルを開発した。
前立腺切除術による脱線をMRIでトレーニングした。
前立腺切除術をベースとした非局所的なMask R-CNNは、微調整と自己訓練により、すべての評価基準を大幅に改善した。
論文 参考訳(メタデータ) (2020-10-28T21:07:09Z) - Automatic lesion detection, segmentation and characterization via 3D
multiscale morphological sifting in breast MRI [3.4400216692203998]
そこで本研究では, 乳房MRIで4次元マルチモーダル乳房MRIデータを処理し, 病変検出, セグメンテーション, キャラクタリゼーションをユーザの介入なしに統合するシステムを提案する。
提案するCADシステムは,領域候補生成,特徴抽出,領域候補分類の3段階からなる。
同じ乳房MRIデータセットで評価したシステムと比較すると,本システムは乳房病変の検出と評価において良好な性能を発揮する。
論文 参考訳(メタデータ) (2020-07-07T04:39:13Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。