Exact Soft Analytical Side-Channel Attacks using Tractable Circuits
- URL: http://arxiv.org/abs/2501.13748v1
- Date: Thu, 23 Jan 2025 15:25:40 GMT
- Title: Exact Soft Analytical Side-Channel Attacks using Tractable Circuits
- Authors: Thomas Wedenig, Rishub Nagpal, Gaƫtan Cassiers, Stefan Mangard, Robert Peharz,
- Abstract summary: We develop a fast and exact inference method for SASCA, denoted as ExSASCA, by leveraging knowledge compilation and tractable probabilistic circuits.
When attacking the Advanced Encryption Standard (AES), ExSASCA outperforms SASCA by more than 31% top-1 success rate absolute.
- Score: 10.132470131311141
- License:
- Abstract: Detecting weaknesses in cryptographic algorithms is of utmost importance for designing secure information systems. The state-of-the-art soft analytical side-channel attack (SASCA) uses physical leakage information to make probabilistic predictions about intermediate computations and combines these "guesses" with the known algorithmic logic to compute the posterior distribution over the key. This attack is commonly performed via loopy belief propagation, which, however, lacks guarantees in terms of convergence and inference quality. In this paper, we develop a fast and exact inference method for SASCA, denoted as ExSASCA, by leveraging knowledge compilation and tractable probabilistic circuits. When attacking the Advanced Encryption Standard (AES), the most widely used encryption algorithm to date, ExSASCA outperforms SASCA by more than 31% top-1 success rate absolute. By leveraging sparse belief messages, this performance is achieved with little more computational cost than SASCA, and about 3 orders of magnitude less than exact inference via exhaustive enumeration. Even with dense belief messages, ExSASCA still uses 6 times less computations than exhaustive inference.
Related papers
- Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
We propose two novel applications of machine learning (ML) algorithms to perform cryptanalysis on any cryptosystem.
These algorithms can be readily applied in an audit setting to evaluate the robustness of a cryptosystem.
We show that our classification model correctly identifies the encryption schemes that are not IND-CPA secure, such as DES, RSA, and AES ECB, with high accuracy.
arXiv Detail & Related papers (2025-01-25T04:53:36Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
We propose SOCI+ which significantly improves the performance of SOCI.
SOCI+ employs a novel (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption as its cryptographic primitive.
Compared with SOCI, our experimental evaluation shows that SOCI+ is up to 5.4 times more efficient in computation and 40% less in communication overhead.
arXiv Detail & Related papers (2023-09-27T05:19:32Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - Scalable Uncertainty Quantification for Deep Operator Networks using
Randomized Priors [14.169588600819546]
We present a simple and effective approach for posterior uncertainty quantification in deep operator networks (DeepONets)
We adopt a frequentist approach based on randomized prior ensembles, and put forth an efficient vectorized implementation for fast parallel inference on accelerated hardware.
arXiv Detail & Related papers (2022-03-06T20:48:16Z) - NetSentry: A Deep Learning Approach to Detecting Incipient Large-scale
Network Attacks [9.194664029847019]
We show how to use Machine Learning for Network Intrusion Detection (NID) in a principled way.
We propose NetSentry, perhaps the first of its kind NIDS that builds on Bi-ALSTM, an original ensemble of sequential neural models.
We demonstrate F1 score gains above 33% over the state-of-the-art, as well as up to 3 times higher rates of detecting attacks such as XSS and web bruteforce.
arXiv Detail & Related papers (2022-02-20T17:41:02Z) - Efficient First-Order Contextual Bandits: Prediction, Allocation, and
Triangular Discrimination [82.52105963476703]
A recurring theme in statistical learning, online learning, and beyond is that faster convergence rates are possible for problems with low noise.
First-order guarantees are relatively well understood in statistical and online learning.
We show that the logarithmic loss and an information-theoretic quantity called the triangular discrimination play a fundamental role in obtaining first-order guarantees.
arXiv Detail & Related papers (2021-07-05T19:20:34Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Consistency of Anchor-based Spectral Clustering [0.0]
Anchor-based techniques reduce the computational complexity of spectral clustering algorithms.
We show that it is amenable to rigorous analysis, as well as being effective in practice.
We find that it is competitive with the state-of-the-art LSC method of Chen and Cai.
arXiv Detail & Related papers (2020-06-24T18:34:41Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
Homomorphic Encryption (HE) is receiving more and more attention recently for its capability to do computations over the encrypted field.
We propose a novel general distributed HE-based data mining framework towards one step of solving the scaling problem.
We verify the efficiency and effectiveness of our new framework by testing over various data mining algorithms and benchmark data-sets.
arXiv Detail & Related papers (2020-06-17T18:14:30Z) - Cryptotree: fast and accurate predictions on encrypted structured data [0.0]
Homomorphic Encryption (HE) is acknowledged for its ability to allow computation on encrypted data, where both the input and output are encrypted.
We propose Cryptotree, a framework that enables the use of Random Forests (RF), a very powerful learning procedure compared to linear regression.
arXiv Detail & Related papers (2020-06-15T11:48:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.