論文の概要: Redundancy Principles for MLLMs Benchmarks
- arxiv url: http://arxiv.org/abs/2501.13953v1
- Date: Mon, 20 Jan 2025 08:09:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:58:30.250374
- Title: Redundancy Principles for MLLMs Benchmarks
- Title(参考訳): MLLMベンチマークの冗長性原理
- Authors: Zicheng Zhang, Xiangyu Zhao, Xinyu Fang, Chunyi Li, Xiaohong Liu, Xiongkuo Min, Haodong Duan, Kai Chen, Guangtao Zhai,
- Abstract要約: 1) ベンチマーク能力の冗長性,2) テスト質問数の冗長性,3) 特定のドメイン内のクロスベンチマークの冗長性。
20以上のベンチマークで数百のMLLMの性能を総合的に分析することにより,既存のMLLM評価における冗長性のレベルを定量的に測定することを目指している。
- 参考スコア(独自算出の注目度): 72.88776679131253
- License:
- Abstract: With the rapid iteration of Multi-modality Large Language Models (MLLMs) and the evolving demands of the field, the number of benchmarks produced annually has surged into the hundreds. The rapid growth has inevitably led to significant redundancy among benchmarks. Therefore, it is crucial to take a step back and critically assess the current state of redundancy and propose targeted principles for constructing effective MLLM benchmarks. In this paper, we focus on redundancy from three key perspectives: 1) Redundancy of benchmark capability dimensions, 2) Redundancy in the number of test questions, and 3) Cross-benchmark redundancy within specific domains. Through the comprehensive analysis over hundreds of MLLMs' performance across more than 20 benchmarks, we aim to quantitatively measure the level of redundancy lies in existing MLLM evaluations, provide valuable insights to guide the future development of MLLM benchmarks, and offer strategies to refine and address redundancy issues effectively.
- Abstract(参考訳): MLLM(Multi-modality Large Language Models)の急激なイテレーションと、この分野の進化する要求により、毎年生産されるベンチマークの数は数百に急増した。
急激な成長は必然的にベンチマークの間に大きな冗長性をもたらした。
したがって、後退して現在の冗長性を批判的に評価し、効果的なMLLMベンチマークを構築するための目標原則を提案することが重要である。
本稿では,3つの観点からの冗長性に着目した。
1)ベンチマーク能力寸法の冗長性
2【試験質問数等の冗長性】
3)特定のドメイン内のクロスベンチマーク冗長性。
20以上のベンチマークで数百のMLLMのパフォーマンスを総合的に分析することにより、既存のMLLM評価における冗長性のレベルを定量的に測定し、MLLMベンチマークの今後の開発をガイドするための貴重な洞察を提供し、冗長性の問題を効果的に洗練・解決するための戦略を提供する。
関連論文リスト
- MME-Industry: A Cross-Industry Multimodal Evaluation Benchmark [20.642661835794975]
産業環境におけるMLLMの評価に特化して設計された新しいベンチマークであるMME-Industryを紹介する。
ベンチマークは21の異なるドメインを含み、1ドメインにつき50の質問と回答のペアが1050である。
ベンチマークの中国語版と英語版の両方を提供し、これらの言語間でMLLMの能力の比較分析を可能にする。
論文 参考訳(メタデータ) (2025-01-28T03:56:17Z) - Are Your LLMs Capable of Stable Reasoning? [38.03049704515947]
大規模言語モデル(LLM)は複雑な推論タスクにおいて顕著な進歩を示している。
しかし、ベンチマークパフォーマンスと実世界のアプリケーションの間には大きな違いがある。
G-Pass@kはモデルの性能を連続的に評価する新しい評価指標である。
本稿では,挑戦的,現代数学的な問題からなる動的ベンチマークであるLiveMathBenchを紹介する。
論文 参考訳(メタデータ) (2024-12-17T18:12:47Z) - FCMR: Robust Evaluation of Financial Cross-Modal Multi-Hop Reasoning [5.65203350495478]
MLLMの推論能力を評価するためのベンチマークであるFCMR(Financial Cross-Modal Multi-Hop Reasoning)を提案する。
FCMRは3つの難易度(易度、中度、硬度)に分類される。
この新しいベンチマークの実験では、最先端のMLLMでさえ苦戦しており、最高の性能のモデルは最も難しいレベルでは30.4%の精度しか達成していない。
論文 参考訳(メタデータ) (2024-12-17T05:50:55Z) - MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
MLLM(Multimodal Large Language Models)は、産業と学術の両方から注目を集めている。
開発プロセスでは、モデルの改善に関する直感的なフィードバックとガイダンスを提供するため、評価が重要である。
この研究は、研究者に異なるニーズに応じてMLLMを効果的に評価する方法を簡単に把握し、より良い評価方法を促すことを目的としている。
論文 参考訳(メタデータ) (2024-11-22T18:59:54Z) - Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
本稿では,MLLM評価におけるLarge Language Model (LLM)バックボーンの役割について検討する。
本研究は4つのMLLMベンチマークと8つの最先端MLLMベンチマークを含む。
鍵となる発見は、いくつかのベンチマークでは視覚的な入力がなくても高いパフォーマンスを実現しており、最大50%のエラーレートは、LLMバックボーンにおける不十分な世界的知識に起因していることを示している。
論文 参考訳(メタデータ) (2024-10-16T07:49:13Z) - A Survey on Benchmarks of Multimodal Large Language Models [65.87641718350639]
本稿では,Multimodal Large Language Models (MLLM) のベンチマークと評価について概説する。
本研究では,(1)知覚と理解,(2)認知と推論,(3)特定のドメイン,(4)キー能力,(5)他のモダリティに着目した。
我々のキーとなる主張は、MLLMの開発をより良いものにするための重要な規律として評価されるべきである、ということである。
論文 参考訳(メタデータ) (2024-08-16T09:52:02Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - MLLM-as-a-Judge: Assessing Multimodal LLM-as-a-Judge with Vision-Language Benchmark [41.68821233828375]
本稿では,MLLM-as-a-Judgeと呼ばれる新しいベンチマークを導入し,多様なモダリティにまたがる審査員を支援するMLLMの能力を評価する。
本研究は, MLLMがPair Comparisonにおいて顕著な人間ライクな識別を示す一方で, Scoring EvaluationとBatch Rankingにおいて, 人間の嗜好とは大きく異なることを明らかにした。
論文 参考訳(メタデータ) (2024-02-07T12:28:32Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
MLLM(Multi-modal Large Language Models)は人工知能の分野で注目されている。
本ベンチマークは, 帰納的, 帰納的, 類推的推論の3つの主要な推論カテゴリから構成される。
我々は,この厳密に開発されたオープンエンド多段階精巧な推論ベンチマークを用いて,代表MLLMの選択を評価する。
論文 参考訳(メタデータ) (2023-11-20T07:06:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。