論文の概要: 3DGS$^2$: Near Second-order Converging 3D Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2501.13975v2
- Date: Mon, 27 Jan 2025 15:20:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:54:56.592212
- Title: 3DGS$^2$: Near Second-order Converging 3D Gaussian Splatting
- Title(参考訳): 3DGS$^2$:近2次収束3Dガウススプラッティング
- Authors: Lei Lan, Tianjia Shao, Zixuan Lu, Yu Zhang, Chenfanfu Jiang, Yin Yang,
- Abstract要約: 3D Gaussian Splatting (3DGS)は、新しいビュー合成と3D再構成の主流のソリューションとして登場した。
本稿では,3DGSの2次収束学習アルゴリズムについて述べる。
- 参考スコア(独自算出の注目度): 26.94968605302451
- License:
- Abstract: 3D Gaussian Splatting (3DGS) has emerged as a mainstream solution for novel view synthesis and 3D reconstruction. By explicitly encoding a 3D scene using a collection of Gaussian kernels, 3DGS achieves high-quality rendering with superior efficiency. As a learning-based approach, 3DGS training has been dealt with the standard stochastic gradient descent (SGD) method, which offers at most linear convergence. Consequently, training often requires tens of minutes, even with GPU acceleration. This paper introduces a (near) second-order convergent training algorithm for 3DGS, leveraging its unique properties. Our approach is inspired by two key observations. First, the attributes of a Gaussian kernel contribute independently to the image-space loss, which endorses isolated and local optimization algorithms. We exploit this by splitting the optimization at the level of individual kernel attributes, analytically constructing small-size Newton systems for each parameter group, and efficiently solving these systems on GPU threads. This achieves Newton-like convergence per training image without relying on the global Hessian. Second, kernels exhibit sparse and structured coupling across input images. This property allows us to effectively utilize spatial information to mitigate overshoot during stochastic training. Our method converges an order faster than standard GPU-based 3DGS training, requiring over $10\times$ fewer iterations while maintaining or surpassing the quality of the compared with the SGD-based 3DGS reconstructions.
- Abstract(参考訳): 3D Gaussian Splatting (3DGS)は、新しいビュー合成と3D再構成の主流のソリューションとして登場した。
ガウスカーネルの集合を用いて3Dシーンを明示的に符号化することにより、3DGSは優れた効率で高品質なレンダリングを実現する。
学習に基づくアプローチとして、3DGSトレーニングは、最も線形収束を提供する標準確率勾配降下法(SGD)に対処されてきた。
結果として、GPUアクセラレーションであっても、トレーニングには数十分を要することが多い。
本稿では,3DGSの2次収束学習アルゴリズムについて述べる。
私たちのアプローチは2つの重要な観察から着想を得ています。
まず、ガウスカーネルの属性は画像空間損失に独立して寄与する。
本稿では,個々のカーネル属性のレベルで最適化を分割し,パラメータ群毎に小さなニュートン系を解析的に構築し,これらのシステムをGPUスレッド上で効率的に解くことによりこれを活用する。
これにより、グローバルヘッセンに依存することなく、トレーニング画像毎のニュートンのような収束が達成される。
第二に、カーネルは入力画像間の疎結合と構造化結合を示す。
この特性により,空間情報を効果的に活用し,確率学習時のオーバーシュートを軽減することができる。
提案手法は,標準的なGPUベースの3DGSトレーニングよりも高速に命令を収束させ,SGDベースの3DGS再構築に比べて品質を維持したり上回ったりしながら,10ドル以上のイテレーションを削減できる。
関連論文リスト
- GaussianSpa: An "Optimizing-Sparsifying" Simplification Framework for Compact and High-Quality 3D Gaussian Splatting [12.342660713851227]
3D Gaussian Splatting (3DGS) は、ガウス関数の連続的な集合を利用して、新しいビュー合成の主流として登場した。
3DGSは、ガウシアンの多さを記憶するためのかなりのメモリ要件に悩まされており、その実用性を妨げている。
コンパクトで高品質な3DGSのための最適化ベースの単純化フレームワークであるGaussianSpaを紹介する。
論文 参考訳(メタデータ) (2024-11-09T00:38:06Z) - 3DGS-LM: Faster Gaussian-Splatting Optimization with Levenberg-Marquardt [65.25603275491544]
3DGS-LM, 3D Gaussian Splatting(3DGS)の再構築を高速化する新しい手法を提案する。
提案手法は元の3DGSよりも30%高速で, 再現品質の最適化が可能である。
論文 参考訳(メタデータ) (2024-09-19T16:31:44Z) - Effective Rank Analysis and Regularization for Enhanced 3D Gaussian Splatting [33.01987451251659]
3D Gaussian Splatting(3DGS)は、高品質な3D再構成によるリアルタイムレンダリングが可能な有望な技術として登場した。
その可能性にもかかわらず、3DGSは針状アーティファクト、準最適ジオメトリー、不正確な正常といった課題に遭遇する。
正規化として有効ランクを導入し、ガウスの構造を制約する。
論文 参考訳(メタデータ) (2024-06-17T15:51:59Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
本稿では,トレーニング可能な2値マスクを重要度に応用し,最適プルーニング比を自動的に検出する3DGSを提案する。
実験の結果,LP-3DGSは効率と高品質の両面において良好なバランスを保っていることがわかった。
論文 参考訳(メタデータ) (2024-05-29T05:58:34Z) - DOGS: Distributed-Oriented Gaussian Splatting for Large-Scale 3D Reconstruction Via Gaussian Consensus [56.45194233357833]
3DGSを分散訓練するDoGaussianを提案する。
大規模シーンで評価すると,3DGSのトレーニングを6回以上高速化する。
論文 参考訳(メタデータ) (2024-05-22T19:17:58Z) - CoherentGS: Sparse Novel View Synthesis with Coherent 3D Gaussians [18.42203035154126]
2次元画像空間で制御できる構造付きガウス表現を導入する。
次に、ガウス群、特にその位置を制約し、最適化中に独立に動くのを防ぐ。
我々は,様々な場面における最先端のスパースビュー NeRF ベースのアプローチと比較して,顕著な改善を示した。
論文 参考訳(メタデータ) (2024-03-28T15:27:13Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition [66.56357905500512]
3Dガウススプラッティングは、新しいビュー合成のための代替の3D表現として登場した。
SAGDは3D-GSのための概念的にシンプルで効果的な境界拡張パイプラインである。
提案手法は粗い境界問題なく高品質な3Dセグメンテーションを実現し,他のシーン編集作業にも容易に適用できる。
論文 参考訳(メタデータ) (2024-01-31T14:19:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。