論文の概要: Second-order Optimization of Gaussian Splats with Importance Sampling
- arxiv url: http://arxiv.org/abs/2504.12905v1
- Date: Thu, 17 Apr 2025 12:52:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:36:47.444011
- Title: Second-order Optimization of Gaussian Splats with Importance Sampling
- Title(参考訳): 重要サンプリングを用いたガウス平板の2次最適化
- Authors: Hamza Pehlivan, Andrea Boscolo Camiletto, Lin Geng Foo, Marc Habermann, Christian Theobalt,
- Abstract要約: 3D Gaussian Splatting (3DGS) は、高品質で高速な推論時間のため、新しいビューレンダリングに広く用いられている。
本稿では,Levenberg-Marquardt (LM) と Conjugate Gradient (CG) に基づく新しい2階最適化手法を提案する。
提案手法は標準LMよりも3倍の高速化を実現し,ガウス数が少ない場合のAdamを6倍の6倍の速さで上回る。
- 参考スコア(独自算出の注目度): 51.95046424364725
- License:
- Abstract: 3D Gaussian Splatting (3DGS) is widely used for novel view synthesis due to its high rendering quality and fast inference time. However, 3DGS predominantly relies on first-order optimizers such as Adam, which leads to long training times. To address this limitation, we propose a novel second-order optimization strategy based on Levenberg-Marquardt (LM) and Conjugate Gradient (CG), which we specifically tailor towards Gaussian Splatting. Our key insight is that the Jacobian in 3DGS exhibits significant sparsity since each Gaussian affects only a limited number of pixels. We exploit this sparsity by proposing a matrix-free and GPU-parallelized LM optimization. To further improve its efficiency, we propose sampling strategies for both the camera views and loss function and, consequently, the normal equation, significantly reducing the computational complexity. In addition, we increase the convergence rate of the second-order approximation by introducing an effective heuristic to determine the learning rate that avoids the expensive computation cost of line search methods. As a result, our method achieves a $3\times$ speedup over standard LM and outperforms Adam by $~6\times$ when the Gaussian count is low while remaining competitive for moderate counts. Project Page: https://vcai.mpi-inf.mpg.de/projects/LM-IS
- Abstract(参考訳): 3D Gaussian Splatting (3DGS) は、高いレンダリング品質と高速な推論時間のために、新しいビュー合成に広く利用されている。
しかし、3DGSは主にAdamのような1次オプティマイザに依存しており、長いトレーニング時間を生み出している。
この制限に対処するため,我々は,ガウス・スプレイティングに特化して,レバンス・マルカルト (LM) と共役勾配 (CG) に基づく新しい2階最適化戦略を提案する。
我々の重要な洞察は、3DGSのヤコビアンはそれぞれのガウスが限られたピクセル数にしか影響しないため、かなりの間隔を示すということである。
我々は,行列のない,GPU並列化されたLM最適化を提案することで,この空間性を利用する。
さらにその効率を向上させるために,カメラビューと損失関数の両方のサンプリング戦略を提案し,その結果,通常の方程式により計算複雑性を著しく低減する。
さらに,線形探索手法の高価な計算コストを回避するための学習率を決定するために,効果的なヒューリスティックを導入することにより,二階近似の収束率を向上させる。
その結果,標準的なLMよりも3\times$の高速化を実現し,ガウス数が少ない一方,適度な数では競争力を維持しながら,Adamを$~6\times$で上回る結果を得た。
プロジェクトページ:https://vcai.mpi-inf.mpg.de/projects/LM-IS
関連論文リスト
- 3DGS$^2$: Near Second-order Converging 3D Gaussian Splatting [26.94968605302451]
3D Gaussian Splatting (3DGS)は、新しいビュー合成と3D再構成の主流のソリューションとして登場した。
本稿では,3DGSの2次収束学習アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2025-01-22T22:28:11Z) - GaussianSpa: An "Optimizing-Sparsifying" Simplification Framework for Compact and High-Quality 3D Gaussian Splatting [12.342660713851227]
3D Gaussian Splatting (3DGS) は、ガウス関数の連続的な集合を利用して、新しいビュー合成の主流として登場した。
3DGSは、ガウシアンの多さを記憶するためのかなりのメモリ要件に悩まされており、その実用性を妨げている。
コンパクトで高品質な3DGSのための最適化ベースの単純化フレームワークであるGaussianSpaを紹介する。
論文 参考訳(メタデータ) (2024-11-09T00:38:06Z) - CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2は大規模なシーン再構築のための新しいアプローチである。
分解段階の密度化・深さ回帰手法を実装し, ぼやけたアーチファクトを除去し, 収束を加速する。
本手法は, 視覚的品質, 幾何学的精度, ストレージ, トレーニングコストの両立を図っている。
論文 参考訳(メタデータ) (2024-11-01T17:59:31Z) - 3DGS-LM: Faster Gaussian-Splatting Optimization with Levenberg-Marquardt [65.25603275491544]
3DGS-LM, 3D Gaussian Splatting(3DGS)の再構築を高速化する新しい手法を提案する。
提案手法は元の3DGSよりも30%高速で, 再現品質の最適化が可能である。
論文 参考訳(メタデータ) (2024-09-19T16:31:44Z) - AdR-Gaussian: Accelerating Gaussian Splatting with Adaptive Radius [38.774337140911044]
3D Gaussian Splatting (3DGS)は、複雑なシーンの高品質な再構成とリアルタイムレンダリングを実現した、最近の明示的な3D表現である。
本稿では,AdR-Gaussianを提案する。これは並列カリングを実現するために,Renderステージのシリアルカリングの一部を前処理ステージに移動させる。
私たちのコントリビューションは3倍で、レンダリング速度は310%で、最先端技術よりも同等かそれ以上品質を維持しています。
論文 参考訳(メタデータ) (2024-09-13T09:32:38Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
本稿では,トレーニング可能な2値マスクを重要度に応用し,最適プルーニング比を自動的に検出する3DGSを提案する。
実験の結果,LP-3DGSは効率と高品質の両面において良好なバランスを保っていることがわかった。
論文 参考訳(メタデータ) (2024-05-29T05:58:34Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES(Generalized Exponential Splatting)は、GEF(Generalized Exponential Function)を用いて3Dシーンをモデル化する斬新な表現である。
周波数変調損失の助けを借りて、GESは新規なビュー合成ベンチマークにおいて競合性能を達成する。
論文 参考訳(メタデータ) (2024-02-15T17:32:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。