論文の概要: CSAOT: Cooperative Multi-Agent System for Active Object Tracking
- arxiv url: http://arxiv.org/abs/2501.13994v1
- Date: Thu, 23 Jan 2025 10:44:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:57:37.868252
- Title: CSAOT: Cooperative Multi-Agent System for Active Object Tracking
- Title(参考訳): CSAOT:アクティブ物体追跡のための協調多エージェントシステム
- Authors: Hy Nguyen, Bao Pham, Hung Du, Srikanth Thudumu, Rajesh Vasa, Kon Mouzakis,
- Abstract要約: Active Object Tracking (AOT) は、複雑な環境で移動対象との視覚的接触を維持するために、コントローラエージェントが視点を積極的に調整する必要がある。
既存のAOTソリューションは主にシングルエージェントベースで、動的で複雑なシナリオに苦しむ。
我々は,複数のエージェントがひとつのデバイス上で動作できるようにするために,CSAOT(Collaborative System for Active Object Tracking)を導入する。
- 参考スコア(独自算出の注目度): 1.384468678066823
- License:
- Abstract: Object Tracking is essential for many computer vision applications, such as autonomous navigation, surveillance, and robotics. Unlike Passive Object Tracking (POT), which relies on static camera viewpoints to detect and track objects across consecutive frames, Active Object Tracking (AOT) requires a controller agent to actively adjust its viewpoint to maintain visual contact with a moving target in complex environments. Existing AOT solutions are predominantly single-agent-based, which struggle in dynamic and complex scenarios due to limited information gathering and processing capabilities, often resulting in suboptimal decision-making. Alleviating these limitations necessitates the development of a multi-agent system where different agents perform distinct roles and collaborate to enhance learning and robustness in dynamic and complex environments. Although some multi-agent approaches exist for AOT, they typically rely on external auxiliary agents, which require additional devices, making them costly. In contrast, we introduce the Collaborative System for Active Object Tracking (CSAOT), a method that leverages multi-agent deep reinforcement learning (MADRL) and a Mixture of Experts (MoE) framework to enable multiple agents to operate on a single device, thereby improving tracking performance and reducing costs. Our approach enhances robustness against occlusions and rapid motion while optimizing camera movements to extend tracking duration. We validated the effectiveness of CSAOT on various interactive maps with dynamic and stationary obstacles.
- Abstract(参考訳): オブジェクト追跡は、自律的なナビゲーション、監視、ロボット工学など、多くのコンピュータビジョンアプリケーションにとって不可欠である。
Passive Object Tracking (POT) とは違い、Active Object Tracking (AOT) は、複雑な環境で移動対象との視覚的接触を維持するために、その視点を積極的に調整するコントローラエージェントを必要とする。
既存のAOTソリューションは主に単一エージェントベースで、情報収集と処理能力の制限により動的で複雑なシナリオに苦しむ。
これらの制限を緩和するには、異なるエージェントが異なる役割を担い、動的で複雑な環境で学習と堅牢性を高めるために協力するマルチエージェントシステムの開発が必要である。
AOTにはいくつかのマルチエージェントアプローチが存在するが、通常は外部補助エージェントに依存しており、追加のデバイスを必要とするため、コストがかかる。
これとは対照的に,多エージェント深部強化学習(MADRL)とMixture of Experts(MoE)フレームワークを活用するCSAOT(Collaborative System for Active Object Tracking)を導入し,複数のエージェントをひとつのデバイスで動作させることにより,トラッキング性能の向上とコスト削減を実現した。
提案手法は、カメラの動きを最適化して追跡期間を延長しながら、閉塞や急激な動きに対する堅牢性を向上する。
CSAOTが動的および定常な障害物を持つ様々なインタラクティブマップに与える影響を検証した。
関連論文リスト
- A Cross-Scene Benchmark for Open-World Drone Active Tracking [54.235808061746525]
Drone Visual Active Trackingは、視覚的な観察に基づいてモーションシステムを制御することで、対象物を自律的に追跡することを目的としている。
DATと呼ばれるオープンワールドドローンアクティブトラッキングのためのクロスシーンクロスドメインベンチマークを提案する。
また、R-VATと呼ばれる強化学習に基づくドローン追跡手法を提案する。
論文 参考訳(メタデータ) (2024-12-01T09:37:46Z) - Very Large-Scale Multi-Agent Simulation in AgentScope [112.98986800070581]
我々は,ユーザフレンドリーなマルチエージェントプラットフォームであるAgentScopeの新機能とコンポーネントを開発した。
高いスケーラビリティと高効率を実現するために,アクタをベースとした分散機構を提案する。
また、多数のエージェントを便利に監視し、管理するためのWebベースのインターフェースも提供します。
論文 参考訳(メタデータ) (2024-07-25T05:50:46Z) - QuadrupedGPT: Towards a Versatile Quadruped Agent in Open-ended Worlds [51.05639500325598]
ペットに匹敵するアジリティで多様なコマンドに従うように設計されたQuadrupedGPTを紹介します。
エージェントは多種多様なタスクを処理し,複雑な指示を行う能力を示し,多種多様四重化エージェントの開発に向けた重要な一歩である。
論文 参考訳(メタデータ) (2024-06-24T12:14:24Z) - Track Anything Rapter(TAR) [0.0]
Track Anything Rapter (TAR)は、ユーザが提供するマルチモーダルクエリに基づいて、関心のあるオブジェクトを検出し、セグメンテーションし、追跡するように設計されている。
TARは、DINO、CLIP、SAMといった最先端の事前訓練モデルを使用して、クエリされたオブジェクトの相対的なポーズを推定する。
本稿では,これらの基礎モデルとカスタム高レベル制御アルゴリズムの統合によって,高度に安定かつ高精度なトラッキングシステムを実現する方法を紹介する。
論文 参考訳(メタデータ) (2024-05-19T19:51:41Z) - Tracking Transforming Objects: A Benchmark [2.53045657890708]
本研究では、DTTOと呼ばれる、約9.3Kのフレームを含む100のシーケンスを含む、新しいTracking Transforming Objects専用のデータセットを収集する。
これらのシーケンス内の各フレームに対して手書きのバウンディングボックスを慎重に提供し、DTTOは変換対象を追跡するための先駆的なベンチマークとなる。
我々は,既存の手法の性能の理解とDTTOの今後の研究との比較を目的として,20の最先端トラッカーをベンチマークで徹底的に評価した。
論文 参考訳(メタデータ) (2024-04-28T11:24:32Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScopeは、メッセージ交換をコアコミュニケーションメカニズムとする、開発者中心のマルチエージェントプラットフォームである。
豊富な構文ツール、組み込みエージェントとサービス機能、アプリケーションのデモとユーティリティモニタのためのユーザフレンドリなインターフェース、ゼロコードプログラミングワークステーション、自動プロンプトチューニング機構により、開発とデプロイメントの両方の障壁は大幅に低下した。
論文 参考訳(メタデータ) (2024-02-21T04:11:28Z) - MotionTrack: Learning Robust Short-term and Long-term Motions for
Multi-Object Tracking [56.92165669843006]
本研究では,短時間から長期間の軌跡を関連づける統合フレームワークで,堅牢な短期・長期動作を学習するMotionTrackを提案する。
密集した群集に対して,各ターゲットの複雑な動きを推定できる,短時間の軌跡から相互作用認識動作を学習するための新しい対話モジュールを設計する。
極端なオクルージョンのために、ターゲットの履歴軌跡から信頼できる長期動作を学習するための新しいRefind Moduleを構築し、中断された軌跡とそれに対応する検出とを関連付けることができる。
論文 参考訳(メタデータ) (2023-03-18T12:38:33Z) - Scalable and Real-time Multi-Camera Vehicle Detection,
Re-Identification, and Tracking [58.95210121654722]
理想化されたビデオストリームやキュレートされたビデオストリームの代わりに,リアルタイムで低解像度のCCTVを処理する,リアルタイムな都市規模のマルチカメラ車両追跡システムを提案する。
私たちの手法は、公共のリーダーボードで上位5人のパフォーマーにランク付けされています。
論文 参考訳(メタデータ) (2022-04-15T12:47:01Z) - Multi-target tracking for video surveillance using deep affinity
network: a brief review [0.0]
ビデオ監視のためのマルチターゲットトラッキング(MTT)は、重要かつ困難なタスクの1つである。
深層学習モデルは人間の脳のように機能することが知られている。
論文 参考訳(メタデータ) (2021-10-29T10:44:26Z) - Multi-Agent Embodied Visual Semantic Navigation with Scene Prior
Knowledge [42.37872230561632]
視覚的セマンティックナビゲーションでは、ロボットは自我中心の視覚的観察を行い、目標のクラスラベルが与えられる。
既存のモデルのほとんどは単一エージェントナビゲーションにのみ有効であり、より複雑なタスクを完了すると、単一のエージェントは低効率でフォールトトレランスが低い。
本稿では,複数のエージェントが協調して複数の対象物を見つけるマルチエージェント視覚意味ナビゲーションを提案する。
論文 参考訳(メタデータ) (2021-09-20T13:31:03Z) - Distributed Reinforcement Learning of Targeted Grasping with Active
Vision for Mobile Manipulators [4.317864702902075]
移動体マニピュレータのための最初のRLベースのシステムを提案する。これは、(a)対象対象物に対する目標把握の一般化を実現し、(b)隠蔽対象物による乱れたシーンの複雑な把握戦略を学習し、(c)可動式手首カメラでアクティブなビジョンを実行し、オブジェクトの発見をより良くする。
シミュレーション環境でシステムのトレーニングと評価を行い,性能向上,動作解析,実環境への移動といった重要なコンポーネントを特定した。
論文 参考訳(メタデータ) (2020-07-16T02:47:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。