論文の概要: Connectivity-aware Synthesis of Quantum Algorithms
- arxiv url: http://arxiv.org/abs/2501.14020v2
- Date: Thu, 30 Jan 2025 08:25:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:11:55.850053
- Title: Connectivity-aware Synthesis of Quantum Algorithms
- Title(参考訳): 量子アルゴリズムの接続性を考慮した合成
- Authors: Florian Dreier, Christoph Fleckenstein, Gregor Aigner, Michael Fellner, Reinhard Stahn, Martin Lanthaler, Wolfgang Lechner,
- Abstract要約: 本稿では,ゲート数と回路深さの両方を最適化する量子アルゴリズムの実装法を提案する。
提案手法では,Parity Twine チェーンと呼ばれる CNOT ベースのビルディングブロックを導入する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We present a general method for the implementation of quantum algorithms that optimizes both gate count and circuit depth. Our approach introduces connectivity-adapted CNOT-based building blocks called Parity Twine chains. It outperforms all known state-of-the art methods for implementing prominent quantum algorithms such as the quantum Fourier transform or the Quantum Approximate Optimization Algorithm across a wide range of quantum hardware, including linear, square-grid, hexagonal, ladder and all-to-all connected devices. For specific cases, we rigorously prove the optimality of our approach.
- Abstract(参考訳): 本稿では,ゲート数と回路深さの両方を最適化する量子アルゴリズムの実装法を提案する。
提案手法では,Parity Twine チェーンと呼ばれる CNOT ベースのビルディングブロックを導入する。
量子フーリエ変換や量子近似最適化アルゴリズムのような卓越した量子アルゴリズムを、線形、正方形、六角形、はしご、全接続デバイスを含む幅広い量子ハードウェアで実装するための、すべての既知の最先端の手法を上回ります。
特定のケースに対しては、我々のアプローチの最適性を厳格に証明する。
関連論文リスト
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Parallel circuit implementation of variational quantum algorithms [0.0]
本稿では,変分量子アルゴリズム(VQA)の量子回路を分割し,並列トレーニングと実行を可能にする手法を提案する。
本稿では,この問題からの固有構造を同定可能な最適化問題に適用する。
我々は,本手法がより大きな問題に対処できるだけでなく,1つのスライスのみを用いてパラメータをトレーニングしながら,完全なVQAモデルを実行することもできることを示した。
論文 参考訳(メタデータ) (2023-04-06T12:52:29Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
我々は3つのハイブリッド量子k-Meansアルゴリズムを設計、実装、評価する。
我々は距離の計算を高速化するために量子現象を利用する。
我々は、我々のハイブリッド量子k-平均アルゴリズムが古典的バージョンよりも効率的であることを示す。
論文 参考訳(メタデータ) (2022-12-13T16:04:16Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Approximate encoding of quantum states using shallow circuits [0.0]
量子シミュレーションとアルゴリズムの一般的な要件は、2量子ゲートのシーケンスを通して複雑な状態を作成することである。
ここでは、限られた数のゲートを用いて、ターゲット状態の近似符号化を作成することを目的とする。
我々の研究は、局所ゲートを用いて目標状態を作成する普遍的な方法を提供し、既知の戦略よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2022-06-30T18:00:04Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Parametrized Complexity of Quantum Inspired Algorithms [0.0]
量子アルゴリズムの有望な領域は量子機械学習と量子最適化である。
近年の量子技術、特に量子ソフトウェアの発展により、研究と産業のコミュニティは量子アルゴリズムの新しい応用を見つけようとしている。
論文 参考訳(メタデータ) (2021-12-22T06:19:36Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Detailed Account of Complexity for Implementation of Some Gate-Based
Quantum Algorithms [55.41644538483948]
特に、状態準備および読み出しプロセスのような実装のいくつかのステップは、アルゴリズム自体の複雑さの側面を超越することができる。
本稿では、方程式の線形系と微分方程式の線形系を解くための量子アルゴリズムの完全な実装に関わる複雑性について述べる。
論文 参考訳(メタデータ) (2021-06-23T16:33:33Z) - Quantum Gate Pattern Recognition and Circuit Optimization for Scientific
Applications [1.6329956884407544]
回路最適化のための2つのアイデアを導入し、AQCELと呼ばれる多層量子回路最適化プロトコルに組み合わせる。
AQCELは、高エネルギー物理学における最終状態の放射をモデル化するために設計された反復的で効率的な量子アルゴリズム上に展開される。
我々の手法は汎用的であり、様々な量子アルゴリズムに有用である。
論文 参考訳(メタデータ) (2021-02-19T16:20:31Z) - Topological Quantum Compiling with Reinforcement Learning [7.741584909637626]
任意の単一ビットゲートを有限の普遍集合から基本ゲートの列にコンパイルする効率的なアルゴリズムを導入する。
このアルゴリズムは、量子物理学における深層学習の興味深い応用への新たな道を開くことができる。
論文 参考訳(メタデータ) (2020-04-09T18:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。