論文の概要: Prior Knowledge Injection into Deep Learning Models Predicting Gene Expression from Whole Slide Images
- arxiv url: http://arxiv.org/abs/2501.14056v1
- Date: Thu, 23 Jan 2025 19:43:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:57:01.734205
- Title: Prior Knowledge Injection into Deep Learning Models Predicting Gene Expression from Whole Slide Images
- Title(参考訳): 全スライド画像からの遺伝子発現を予測するディープラーニングモデルへの事前知識注入
- Authors: Max Hallemeesch, Marija Pizurica, Paloma Rabaey, Olivier Gevaert, Thomas Demeester, Kathleen Marchal,
- Abstract要約: 我々は、ディープラーニングアーキテクチャに遺伝子間相互作用に関する事前知識を注入できるモデルに依存しないフレームワークを導入する。
当社の戦略は18の実験すべてにおいて、平均で983個の重要な遺伝子が増加し、14個の独立したデータセットが増加するまで一般化される。
- 参考スコア(独自算出の注目度): 6.726990710194119
- License:
- Abstract: Cancer diagnosis and prognosis primarily depend on clinical parameters such as age and tumor grade, and are increasingly complemented by molecular data, such as gene expression, from tumor sequencing. However, sequencing is costly and delays oncology workflows. Recent advances in Deep Learning allow to predict molecular information from morphological features within Whole Slide Images (WSIs), offering a cost-effective proxy of the molecular markers. While promising, current methods lack the robustness to fully replace direct sequencing. Here we aim to improve existing methods by introducing a model-agnostic framework that allows to inject prior knowledge on gene-gene interactions into Deep Learning architectures, thereby increasing accuracy and robustness. We design the framework to be generic and flexibly adaptable to a wide range of architectures. In a case study on breast cancer, our strategy leads to an average increase of 983 significant genes (out of 25,761) across all 18 experiments, with 14 generalizing to an increase on an independent dataset. Our findings reveal a high potential for injection of prior knowledge to increase gene expression prediction performance from WSIs across a wide range of architectures.
- Abstract(参考訳): がんの診断と予後は、主に年齢や腫瘍のグレードなどの臨床パラメータに依存し、腫瘍シークエンシングによる遺伝子発現などの分子データによって補完される傾向にある。
しかし、シークエンシングはコストが高く、オンコロジーワークフローが遅れる。
近年のDeep Learningの進歩は、WSI(Whole Slide Images)内の形態的特徴から分子情報を予測し、分子マーカーのコスト効率の良いプロキシを提供する。
有望な一方で、現在のメソッドは直接シークエンシングを完全に置き換える堅牢性に欠ける。
本稿では、ディープラーニングアーキテクチャに遺伝子間相互作用に関する事前知識を注入し、精度と堅牢性を高めるモデル非依存フレームワークを導入することにより、既存の手法を改善することを目的とする。
フレームワークは汎用的で、幅広いアーキテクチャに柔軟に適用できるように設計されています。
乳がんのケーススタディでは、我々の戦略は18の実験中平均で983個の重要な遺伝子(25,761個中)が増加し、14個の独立したデータセットが増加し、14個の遺伝子が一般化される。
本研究は,WSI の遺伝子発現予測性能を高めるために,先行知識を注入する可能性が高いことを示した。
関連論文リスト
- Enhancing Brain Tumor Classification Using TrAdaBoost and Multi-Classifier Deep Learning Approaches [0.0]
脳腫瘍は、急速な成長と転移の可能性のために深刻な健康上の脅威となる。
本研究の目的は,脳腫瘍分類の効率と精度を向上させることである。
我々のアプローチは、ViT(Vision Transformer)、Capsule Neural Network(CapsNet)、ResNet-152やVGG16といった畳み込みニューラルネットワーク(CNN)など、最先端のディープラーニングアルゴリズムを組み合わせる。
論文 参考訳(メタデータ) (2024-10-31T07:28:06Z) - Biophysics Informed Pathological Regularisation for Brain Tumour Segmentation [10.466349398419846]
本稿では,脳腫瘍進展部分微分方程式(PDE)モデルをディープラーニングを用いた正規化として設計する手法を提案する。
本手法では,特にデータ共有シナリオにおいて,腫瘍増殖PDEモデルをセグメント化プロセスに直接導入し,精度とロバスト性を向上させる。
我々は、BraTS 2023データセットの広範な実験を通じて、我々のフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-14T07:21:46Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
遺伝子ワイド・アソシエーション(GWAS)は、遺伝的変異と特定の形質の関係を同定するために用いられる。
画像遺伝学の表現学習は、GWASによって引き起こされる固有の課題により、ほとんど探索されていない。
本稿では,GWAS の具体的な課題に対処するために,トランスモーダル学習フレームワーク Genetic InfoMax (GIM) を提案する。
論文 参考訳(メタデータ) (2023-09-26T03:59:21Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
がんを研究・治療するための計算予測モデルをエクスプロイトすることは、薬物開発の改善と治療計画のパーソナライズドデザインにおいて大きな可能性を秘めている。
最近の研究の波は、ディープラーニング手法を用いて、薬物治療に対するがん反応を予測するという有望な結果を示している。
このレビューは、この分野の現状をよりよく理解し、主要な課題と将来性のあるソリューションパスを特定します。
論文 参考訳(メタデータ) (2022-11-18T03:26:31Z) - Federated Learning with Research Prototypes for Multi-Center MRI-based
Detection of Prostate Cancer with Diverse Histopathology [3.8613414331251423]
前立腺癌検出アルゴリズムのクロスサイトトレーニング,検証,評価のためのフレキシブル・フェデレート・ラーニング・フレームワークを提案する。
前立腺癌の検出と分類の精度は,神経回路モデルと多種多様な前立腺生検データを用いて向上した。
我々はFLtoolsシステムをオープンソースとして公開し、医療画像のための他のディープラーニングプロジェクトに容易に対応できるようにしています。
論文 参考訳(メタデータ) (2022-06-11T21:28:17Z) - Pan-Cancer Integrative Histology-Genomic Analysis via Interpretable
Multimodal Deep Learning [4.764927152701701]
14種類のがん患者5,720人のスライド画像,RNA配列,コピー数の変化,および突然変異データを統合する。
我々の解釈可能な、弱教師付き、マルチモーダルなディープラーニングアルゴリズムは、これらの不均一なモダリティを融合して結果を予測することができる。
本研究は,全ての癌型にまたがる予後予測に寄与する形態学的および分子マーカーを解析する。
論文 参考訳(メタデータ) (2021-08-04T20:40:05Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。