論文の概要: PathGene: Benchmarking Driver Gene Mutations and Exon Prediction Using Multicenter Lung Cancer Histopathology Image Dataset
- arxiv url: http://arxiv.org/abs/2506.00096v1
- Date: Fri, 30 May 2025 11:51:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:32.286939
- Title: PathGene: Benchmarking Driver Gene Mutations and Exon Prediction Using Multicenter Lung Cancer Histopathology Image Dataset
- Title(参考訳): PathGene:マルチセンター肺癌組織像データセットを用いたベンチマークドライバ遺伝子変異とエキソン予測
- Authors: Liangrui Pan, Qingchun Liang, Shen Zhao, Songqing Fan, Shaoliang Peng,
- Abstract要約: 肺癌における遺伝子変異、変異サブタイプおよびそれらのエクソンの正確な予測は、パーソナライズされた治療計画と予後評価に重要である。
病理組織像と次世代シークエンシングレポートを組み合わせたPathGeneを収集した。
このマルチセンターデータセットは、全スライディングイメージをドライバ遺伝子変異状態、突然変異サブタイプ、エキソン、腫瘍突然変異負担(TMB)ステータスにリンクする。
- 参考スコア(独自算出の注目度): 3.716599571611912
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurately predicting gene mutations, mutation subtypes and their exons in lung cancer is critical for personalized treatment planning and prognostic assessment. Faced with regional disparities in medical resources and the high cost of genomic assays, using artificial intelligence to infer these mutations and exon variants from routine histopathology images could greatly facilitate precision therapy. Although some prior studies have shown that deep learning can accelerate the prediction of key gene mutations from lung cancer pathology slides, their performance remains suboptimal and has so far been limited mainly to early screening tasks. To address these limitations, we have assembled PathGene, which comprises histopathology images paired with next-generation sequencing reports from 1,576 patients at the Second Xiangya Hospital, Central South University, and 448 TCGA-LUAD patients. This multi-center dataset links whole-slide images to driver gene mutation status, mutation subtypes, exon, and tumor mutational burden (TMB) status, with the goal of leveraging pathology images to predict mutations, subtypes, exon locations, and TMB for early genetic screening and to advance precision oncology. Unlike existing datasets, we provide molecular-level information related to histopathology images in PathGene to facilitate the development of biomarker prediction models. We benchmarked 11 multiple-instance learning methods on PathGene for mutation, subtype, exon, and TMB prediction tasks. These experimental methods provide valuable alternatives for early genetic screening of lung cancer patients and assisting clinicians to quickly develop personalized precision targeted treatment plans for patients. Code and data are available at https://github.com/panliangrui/NIPS2025/.
- Abstract(参考訳): 肺癌における遺伝子変異、変異サブタイプおよびそれらのエクソンの正確な予測は、パーソナライズされた治療計画と予後評価に重要である。
医療資源の地域差やゲノムアッセイの高コストに直面した人工知能は、通常の病理画像からこれらの変異やエキソン変異を推測し、精度の高い治療を大いに促進する可能性がある。
いくつかの先行研究は、深層学習が肺癌の病理組織スライドから重要な遺伝子変異の予測を加速できることを示したが、その性能は相変わらず最適であり、これまでは主に早期スクリーニングに限られてきた。
この限界に対処するため,我々は,第2新谷病院の1,576例とTCGA-LUAD448例の組織像と,次世代シークエンシングを併用したPathGeneを構築した。
このマルチセンターデータセットは、全スライディング画像をドライバ遺伝子変異ステータス、突然変異サブタイプ、エクソン、および腫瘍突然変異負担(TMB)ステータスにリンクし、早期遺伝子スクリーニングのための突然変異、サブタイプ、エクソン位置、およびTMBを予測するために病理画像を活用することを目的としている。
既存のデータセットとは異なり、バイオマーカー予測モデルの開発を容易にするため、PathGeneの病理画像に関連する分子レベル情報を提供する。
突然変異, サブタイプ, エキソン, TMB予測タスクにおいて, PathGene を用いた11種類のマルチインスタンス学習手法をベンチマークした。
これらの実験方法は、肺癌患者の早期遺伝子スクリーニングのための貴重な代替手段を提供し、臨床者が患者に対するパーソナライズされた精度の高い治療計画を迅速に開発できるように支援する。
コードとデータはhttps://github.com/panliangrui/NIPS2025/で公開されている。
関連論文リスト
- GRAPE: Heterogeneous Graph Representation Learning for Genetic Perturbation with Coding and Non-Coding Biotype [51.58774936662233]
遺伝子制御ネットワーク(GRN)の構築は、遺伝的摂動の影響を理解し予測するために不可欠である。
本研究では,事前学習した大規模言語モデルとDNAシークエンスモデルを用いて,遺伝子記述やDNAシークエンスデータから特徴を抽出する。
我々は、遺伝子摂動において初めて遺伝子バイオタイプ情報を導入し、細胞プロセスの制御において異なるバイオタイプを持つ遺伝子の異なる役割をシミュレートした。
論文 参考訳(メタデータ) (2025-05-06T03:35:24Z) - SurGen: 1020 H&E-stained Whole Slide Images With Survival and Genetic Markers [0.0]
大腸癌843例のスライド画像(WSI)を1,020個のH&E染色したデータセットであるSurGenについて紹介する。
このデータセットには、キー遺伝子変異(KRAS、NRAS、BRAF)とミスマッチ修復状態の詳細なアノテーションと、426件の生存データが含まれている。
論文 参考訳(メタデータ) (2025-02-07T14:12:07Z) - Survey and Improvement Strategies for Gene Prioritization with Large Language Models [61.24568051916653]
大規模言語モデル (LLM) は, 医学検査において良好に機能しているが, 希少な遺伝疾患の診断における有効性は評価されていない。
表現型と可溶性レベルに基づいて, マルチエージェントとヒトフェノタイプオントロジー(HPO)を分類した。
ベースラインでは、GPT-4は他のLLMよりも優れており、因果遺伝子を正しくランク付けする際の精度は30%近く向上した。
論文 参考訳(メタデータ) (2025-01-30T23:03:03Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
遺伝子変異予測性能を向上させるため,生物知識を付加したPathGenomic Multi-label Transformerを開発した。
BPGTはまず、2つの慎重に設計されたモジュールによって遺伝子前駆体を構成する新しい遺伝子エンコーダを確立する。
BPGTはその後ラベルデコーダを設計し、最終的に2つの調整されたモジュールによる遺伝的突然変異予測を行う。
論文 参考訳(メタデータ) (2024-06-05T06:42:27Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
カナダでは、前立腺がんは男性でもっとも一般的ながんであり、2022年のこの人口統計では、新しいがん症例の20%を占めている。
拡散強調画像(DWI)データを用いた前立腺癌診断,予後,治療計画のためのディープニューラルネットワークの開発には大きな関心が寄せられている。
本研究では,解剖学的条件制御型潜伏拡散戦略の導入により,現実的な前立腺DWIデータを生成するための潜伏拡散の有効性について検討した。
論文 参考訳(メタデータ) (2023-11-30T15:11:03Z) - Breast Cancer Histopathology Image based Gene Expression Prediction
using Spatial Transcriptomics data and Deep Learning [3.583756449759971]
本稿では,病理組織像から遺伝子発現を予測するためのディープラーニングフレームワークBrST-Netを提案する。
我々は,250遺伝子の予測に事前訓練した重みを使わずに10種類の最先端ディープラーニングモデルを訓練し,評価した。
本手法は,0.50以上の正相関係数を持つ24遺伝子を含む237遺伝子を同定し,過去の研究より優れていた。
論文 参考訳(メタデータ) (2023-03-17T14:03:40Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
がんは心臓血管疾患の2番目の死因である。
遺伝子発現は癌の早期発見において基本的な役割を担っている。
本研究は,機械学習を用いた癌分類における遺伝子発現解析の最近の進歩を概説する。
論文 参考訳(メタデータ) (2023-01-28T15:03:03Z) - Optimize Deep Learning Models for Prediction of Gene Mutations Using
Unsupervised Clustering [6.494144125433731]
ディープ・ラーニング(Deep Learning)は、全スライディングのデジタル病理画像の解析と解釈において、主流の方法論選択となっている。
本稿では, 教師なしクラスタリングに基づくマルチインスタンス学習を提案するとともに, 3種類の癌からのWSIを用いた遺伝子変異予測のための深層学習モデルの構築に本手法を適用した。
画像パッチの教師なしクラスタリングは, 予測パッチの同定, 予測情報の欠如を排除し, 3種類の癌における遺伝子変異の予測を改善できることを示した。
論文 参考訳(メタデータ) (2022-03-31T11:48:21Z) - DeepGene Transformer: Transformer for the gene expression-based classification of cancer subtypes [5.179504118679301]
がんとそのサブタイプは世界中の死因の約30%を占める。
マルチヘッド自己認識モジュールを用いた高次元遺伝子発現の複雑さに対処するDeepGene Transformerを提案する。
論文 参考訳(メタデータ) (2021-08-26T15:02:55Z) - Transcriptome-wide prediction of prostate cancer gene expression from
histopathology images using co-expression based convolutional neural networks [0.8874479658912061]
形態と遺伝子発現の関係を特異的にモデル化する新しい計算効率の高い手法を提案する。
前立腺癌におけるRNA塩基配列推定のためのCNNを用いた第1回トランスクリプトーム解析を行った。
論文 参考訳(メタデータ) (2021-04-19T13:50:25Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。