StreamingRAG: Real-time Contextual Retrieval and Generation Framework
- URL: http://arxiv.org/abs/2501.14101v1
- Date: Thu, 23 Jan 2025 21:20:10 GMT
- Title: StreamingRAG: Real-time Contextual Retrieval and Generation Framework
- Authors: Murugan Sankaradas, Ravi K. Rajendran, Srimat T. Chakradhar,
- Abstract summary: StreamingRAG is a novel framework designed for streaming data analysis.<n>It achieves significant improvements in real-time analysis (5-6x faster throughput), contextual accuracy (through a temporal knowledge graph), and reduced resource consumption (using lightweight models by 2-3x)
- Score: 0.8309949345495992
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Extracting real-time insights from multi-modal data streams from various domains such as healthcare, intelligent transportation, and satellite remote sensing remains a challenge. High computational demands and limited knowledge scope restrict the applicability of Multi-Modal Large Language Models (MM-LLMs) on these data streams. Traditional Retrieval-Augmented Generation (RAG) systems address knowledge limitations of these models, but suffer from slow preprocessing, making them unsuitable for real-time analysis. We propose StreamingRAG, a novel RAG framework designed for streaming data. StreamingRAG constructs evolving knowledge graphs capturing scene-object-entity relationships in real-time. The knowledge graph achieves temporal-aware scene representations using MM-LLMs and enables timely responses for specific events or user queries. StreamingRAG addresses limitations in existing methods, achieving significant improvements in real-time analysis (5-6x faster throughput), contextual accuracy (through a temporal knowledge graph), and reduced resource consumption (using lightweight models by 2-3x).
Related papers
- T-GRAG: A Dynamic GraphRAG Framework for Resolving Temporal Conflicts and Redundancy in Knowledge Retrieval [4.114480531154174]
We propose Temporal GraphRAG (T-GRAG), a dynamic, temporally-aware RAG framework that models the evolution of knowledge over time.<n>T-GRAG consists of five key components: (1) a Temporal Knowledge Graph Generator that creates time-stamped, evolving graph structures; (2) a Temporal Query Decomposition mechanism that breaks complex temporal queries into manageable sub-queries; and (3) a Three-layer Interactive Retriever that progressively filters and refines retrieval across temporal subgraphs.<n>Extensive experiments show that T-GRAG significantly outperforms prior RAG and GraphRAG baselines in both retrieval accuracy and response
arXiv Detail & Related papers (2025-08-03T09:15:36Z) - MMGraphRAG: Bridging Vision and Language with Interpretable Multimodal Knowledge Graphs [6.165053219836395]
We propose MMGraphRAG, which refines visual content through scene graphs and constructs a multimodal knowledge graph.<n>It employs spectral clustering to achieve cross-modal entity linking and retrieves context along reasoning paths to guide the generative process.<n> Experimental results show that MMGraphRAG achieves state-of-the-art performance on the DocBench and MMLongBench datasets.
arXiv Detail & Related papers (2025-07-28T13:16:23Z) - DaMO: A Data-Efficient Multimodal Orchestrator for Temporal Reasoning with Video LLMs [5.074812070492738]
We introduce DaMO, a data-efficient Video LLM specifically designed for accurate temporal reasoning and multimodal understanding.<n>We train DaMO via a structured four-stage progressive training paradigm, incrementally equipping the model with multimodal alignment, semantic grounding, and temporal reasoning capabilities.<n>Our work establishes a promising direction for data-efficient video-language modeling.
arXiv Detail & Related papers (2025-06-13T08:13:05Z) - Enhancing Large Language Models (LLMs) for Telecommunications using Knowledge Graphs and Retrieval-Augmented Generation [52.8352968531863]
Large language models (LLMs) have made significant progress in general-purpose natural language processing tasks.
This paper presents a novel framework that combines knowledge graph (KG) and retrieval-augmented generation (RAG) techniques to enhance LLM performance in the telecom domain.
arXiv Detail & Related papers (2025-03-31T15:58:08Z) - ScaDyG:A New Paradigm for Large-scale Dynamic Graph Learning [31.629956388962814]
ScaDyG is a time-aware scalable learning paradigm for dynamic graph networks.
experiments on 12 datasets demonstrate that ScaDyG performs comparably well or even outperforms other SOTA methods in both node and link-level downstream tasks.
arXiv Detail & Related papers (2025-01-27T12:39:16Z) - Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks [11.053340674721005]
Retrieval-augmented generation (RAG) has gained traction as a powerful approach for enhancing language models by integrating external knowledge sources.<n>This paper proposes an alternative paradigm, cache-augmented generation (CAG) that bypasses real-time retrieval.
arXiv Detail & Related papers (2024-12-20T06:58:32Z) - Iterative Forgetting: Online Data Stream Regression Using Database-Inspired Adaptive Granulation [1.6874375111244329]
We present a database-inspired datastream regression model that uses inspiration from R*-trees to create granules from incoming datastreams.
Experiments demonstrate that the ability of this method to discard data produces a significant order-of-magnitude improvement in latency and training time.
arXiv Detail & Related papers (2024-03-14T17:26:00Z) - GATGPT: A Pre-trained Large Language Model with Graph Attention Network
for Spatiotemporal Imputation [19.371155159744934]
In real-world settings, such data often contain missing elements due to issues like sensor malfunctions and data transmission errors.
The objective oftemporal imputation is to estimate these missing values by understanding the inherent spatial and temporal relationships in the observed time series.
Traditionally, intricatetemporal imputation has relied on specific architectures, which suffer from limited applicability and high computational complexity.
In contrast our approach integrates pre-trained large language models (LLMs) into intricatetemporal imputation, introducing a groundbreaking framework, GATGPT.
arXiv Detail & Related papers (2023-11-24T08:15:11Z) - LLM4DyG: Can Large Language Models Solve Spatial-Temporal Problems on Dynamic Graphs? [56.85995048874959]
This paper proposes to evaluate Large Language Models' spatial-temporal understanding abilities on dynamic graphs.
We conduct experiments to analyze the impacts of different data generators, data statistics, prompting techniques, and LLMs on the model performance.
Finally, we propose Disentangled Spatial-Temporal Thoughts (DST2) for LLMs on dynamic graphs to enhance LLMs' spatial-temporal understanding abilities.
arXiv Detail & Related papers (2023-10-26T02:37:43Z) - GenTKG: Generative Forecasting on Temporal Knowledge Graph with Large Language Models [35.594662986581746]
Large language models (LLMs) have ignited interest in the temporal knowledge graph (tKG) domain, where conventional embedding-based and rule-based methods dominate.
We propose a novel retrieval-augmented generation framework named GenTKG combining a temporal logical rule-based retrieval strategy and few-shot parameter-efficient instruction tuning.
Experiments have shown that GenTKG outperforms conventional methods of temporal relational forecasting with low computation resources.
arXiv Detail & Related papers (2023-10-11T18:27:12Z) - Zero-Shot Video Moment Retrieval from Frozen Vision-Language Models [58.17315970207874]
We propose a zero-shot method for adapting generalisable visual-textual priors from arbitrary VLM to facilitate moment-text alignment.
Experiments conducted on three VMR benchmark datasets demonstrate the notable performance advantages of our zero-shot algorithm.
arXiv Detail & Related papers (2023-09-01T13:06:50Z) - MuRAG: Multimodal Retrieval-Augmented Generator for Open Question
Answering over Images and Text [58.655375327681774]
We propose the first Multimodal Retrieval-Augmented Transformer (MuRAG)
MuRAG accesses an external non-parametric multimodal memory to augment language generation.
Our results show that MuRAG achieves state-of-the-art accuracy, outperforming existing models by 10-20% absolute on both datasets.
arXiv Detail & Related papers (2022-10-06T13:58:03Z) - STIP: A SpatioTemporal Information-Preserving and Perception-Augmented
Model for High-Resolution Video Prediction [78.129039340528]
We propose a Stemporal Information-Preserving and Perception-Augmented Model (STIP) to solve the above two problems.
The proposed model aims to preserve thetemporal information for videos during the feature extraction and the state transitions.
Experimental results show that the proposed STIP can predict videos with more satisfactory visual quality compared with a variety of state-of-the-art methods.
arXiv Detail & Related papers (2022-06-09T09:49:04Z) - Deep Neural Networks for Approximating Stream Reasoning with C-SPARQL [0.8677532138573983]
C-SPARQL is a language for continuous queries over streams of RDF data.
We investigate whether reasoning with C-SPARQL can be approximated using Recurrent Neural Networks and Convolutional Neural Networks.
arXiv Detail & Related papers (2021-06-15T21:51:47Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.