Reconstruction and Prediction of Volterra Integral Equations Driven by Gaussian Noise
- URL: http://arxiv.org/abs/2506.00933v1
- Date: Sun, 01 Jun 2025 09:54:50 GMT
- Title: Reconstruction and Prediction of Volterra Integral Equations Driven by Gaussian Noise
- Authors: Zhihao Xu, Saisai Ding, Zhikun Zhang, Xiangjun Wang,
- Abstract summary: This research addresses the parameter identification problem, also known as the equation reconstruction problem, in Volterra integral equations driven by Gaussian noise.<n>We propose an improved deep neural networks framework for estimating unknown parameters in the drift term of these equations.
- Score: 5.5712763695008105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Integral equations are widely used in fields such as applied modeling, medical imaging, and system identification, providing a powerful framework for solving deterministic problems. While parameter identification for differential equations has been extensively studied, the focus on integral equations, particularly stochastic Volterra integral equations, remains limited. This research addresses the parameter identification problem, also known as the equation reconstruction problem, in Volterra integral equations driven by Gaussian noise. We propose an improved deep neural networks framework for estimating unknown parameters in the drift term of these equations. The network represents the primary variables and their integrals, enhancing parameter estimation accuracy by incorporating inter-output relationships into the loss function. Additionally, the framework extends beyond parameter identification to predict the system's behavior outside the integration interval. Prediction accuracy is validated by comparing predicted and true trajectories using a 95% confidence interval. Numerical experiments demonstrate the effectiveness of the proposed deep neural networks framework in both parameter identification and prediction tasks, showing robust performance under varying noise levels and providing accurate solutions for modeling stochastic systems.
Related papers
- Discovering Governing Equations in the Presence of Uncertainty [11.752763800308276]
In this work, we theorize that accounting for system variability together with measurement noise is the key to consistently discover the governing equations underlying dynamical systems.<n>We show that SIP consistently identifies the correct equations by an average of 82% relative to the Sparse Identification Dynamics (SINDy) approach and its variant.
arXiv Detail & Related papers (2025-07-13T18:31:25Z) - Neural network-enhanced integrators for simulating ordinary differential equations [0.0]
NNs are trained to learn integration errors, which are then used as additive correction terms in numerical schemes.<n>The effectiveness of the proposed approaches is demonstrated through extensive numerical studies using a realistic model of a wind turbine.
arXiv Detail & Related papers (2025-04-07T20:38:35Z) - EFiGP: Eigen-Fourier Physics-Informed Gaussian Process for Inference of Dynamic Systems [0.9361474110798144]
estimation and trajectory reconstruction for data-driven dynamical systems governed by ordinary differential equations (ODEs) are essential tasks in fields such as biology, engineering, and physics.<n>We propose the Eigen-Fourier Physics-Informed Gaussian Process (EFiGP), an algorithm that integrates Fourier transformation and eigen-decomposition into a physics-informed Gaussian Process framework.
arXiv Detail & Related papers (2025-01-23T21:35:02Z) - Deep Operator Networks for Bayesian Parameter Estimation in PDEs [0.0]
We present a novel framework combining Deep Operator Networks (DeepONets) with Physics-Informed Neural Networks (PINNs) to solve partial differential equations (PDEs)<n>By integrating data-driven learning with physical constraints, our method achieves robust and accurate solutions across diverse scenarios.
arXiv Detail & Related papers (2025-01-18T07:41:05Z) - Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Neural Control Variates with Automatic Integration [49.91408797261987]
This paper proposes a novel approach to construct learnable parametric control variates functions from arbitrary neural network architectures.
We use the network to approximate the anti-derivative of the integrand.
We apply our method to solve partial differential equations using the Walk-on-sphere algorithm.
arXiv Detail & Related papers (2024-09-23T06:04:28Z) - Statistical Mechanics of Dynamical System Identification [2.8820361301109365]
We develop a statistical mechanics approach to analyze sparse equation discovery algorithms.<n>We provide a method for closed-loop inference, estimating the noise in a given model.<n>This perspective of sparse equation discovery is versatile and can be adapted to various other equation discovery algorithms.
arXiv Detail & Related papers (2024-03-04T04:32:28Z) - PI-VEGAN: Physics Informed Variational Embedding Generative Adversarial
Networks for Stochastic Differential Equations [14.044012646069552]
We present a new category of physics-informed neural networks called physics informed embedding generative adversarial network (PI-VEGAN)
PI-VEGAN effectively tackles forward, inverse, and mixed problems of differential equations.
We evaluate the effectiveness of PI-VEGAN in addressing forward, inverse, and mixed problems that require the concurrent calculation of system parameters and solutions.
arXiv Detail & Related papers (2023-07-21T01:18:02Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
We propose the attention-inspired numerical solver (AttNS) to solve differential equations due to limited data.<n>AttNS is inspired by the effectiveness of attention modules in Residual Neural Networks (ResNet) in enhancing model generalization and robustness.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
Symbolic recovery of differential equations is the ambitious attempt at automating the derivation of governing equations.
We provide both necessary and sufficient conditions for a function to uniquely determine the corresponding differential equation.
We then use our results to devise numerical algorithms aiming to determine whether a function solves a differential equation uniquely.
arXiv Detail & Related papers (2022-10-15T17:32:49Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Neural Control Variates [71.42768823631918]
We show that a set of neural networks can face the challenge of finding a good approximation of the integrand.
We derive a theoretically optimal, variance-minimizing loss function, and propose an alternative, composite loss for stable online training in practice.
Specifically, we show that the learned light-field approximation is of sufficient quality for high-order bounces, allowing us to omit the error correction and thereby dramatically reduce the noise at the cost of negligible visible bias.
arXiv Detail & Related papers (2020-06-02T11:17:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.