Sample Complexity Bounds for Scalar Parameter Estimation Under Quantum Differential Privacy
- URL: http://arxiv.org/abs/2501.14184v3
- Date: Mon, 19 May 2025 00:29:31 GMT
- Title: Sample Complexity Bounds for Scalar Parameter Estimation Under Quantum Differential Privacy
- Authors: Farhad Farokhi,
- Abstract summary: This paper presents tight upper and lower bounds for minimum number of samples required to attain a prescribed accuracy.<n>The best-case (optimal) scenario is considered by minimizing the sample complexity over all differentially-private channels.
- Score: 9.244521717083696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents tight upper and lower bounds for minimum number of samples (copies of a quantum state) required to attain a prescribed accuracy (measured by error variance) for scalar parameters estimation using unbiased estimators under quantum local differential privacy for qubits. Particularly, the best-case (optimal) scenario is considered by minimizing the sample complexity over all differentially-private channels; the worst-case channels can be arbitrarily uninformative and render the problem ill-defined. In the small privacy budget $\epsilon$ regime, i.e., $\epsilon\ll 1$, the sample complexity scales as $\Theta(\epsilon^{-2})$. This bound matches that of classical parameter estimation under local differential privacy. The lower bound however loosens in the large privacy budget regime, i.e., $\epsilon\gg 1$. The upper bound for the minimum number of samples is generalized to qudits (with dimension $d$) resulting in sample complexity of $O(d\epsilon^{-2})$.
Related papers
- Differentially Private Best-Arm Identification [14.916947598339988]
Best Arm Identification (BAI) problems are progressively used for data-sensitive applications.
Motivated by the data privacy concerns invoked by these applications, we study the problem of BAI with fixed confidence in both the local and central models.
arXiv Detail & Related papers (2024-06-10T16:02:48Z) - Avoiding Pitfalls for Privacy Accounting of Subsampled Mechanisms under Composition [13.192083588571384]
We consider the problem of computing tight privacy guarantees for the composition of subsampled differentially private mechanisms.
Recent algorithms can numerically compute the privacy parameters to arbitrary precision but must be carefully applied.
arXiv Detail & Related papers (2024-05-27T20:30:12Z) - On the existence of unbiased resilient estimators in discrete quantum systems [0.0]
Bhattacharyya bounds offer a more robust estimation framework with respect to prior accuracy.<n>We show that when the number of constraints exceeds the number of measurement outcomes, an estimator with finite variance typically does not exist.
arXiv Detail & Related papers (2024-02-23T10:12:35Z) - Fixed-Budget Differentially Private Best Arm Identification [62.36929749450298]
We study best arm identification (BAI) in linear bandits in the fixed-budget regime under differential privacy constraints.
We derive a minimax lower bound on the error probability, and demonstrate that the lower and the upper bounds decay exponentially in $T$.
arXiv Detail & Related papers (2024-01-17T09:23:25Z) - A Generalized Shuffle Framework for Privacy Amplification: Strengthening Privacy Guarantees and Enhancing Utility [4.7712438974100255]
We show how to shuffle $(epsilon_i,delta_i)$-PLDP setting with personalized privacy parameters.
We prove that shuffled $(epsilon_i,delta_i)$-PLDP process approximately preserves $mu$-Gaussian Differential Privacy with mu = sqrtfrac2sum_i=1n frac1-delta_i1+eepsilon_i-max_ifrac1-delta_i1+e
arXiv Detail & Related papers (2023-12-22T02:31:46Z) - Some Constructions of Private, Efficient, and Optimal $K$-Norm and Elliptic Gaussian Noise [54.34628844260993]
Differentially private computation often begins with a bound on some $d$-dimensional statistic's sensitivity.
For pure differential privacy, the $K$-norm mechanism can improve on this approach using a norm tailored to the statistic's sensitivity space.
This paper solves both problems for the simple statistics of sum, count, and vote.
arXiv Detail & Related papers (2023-09-27T17:09:36Z) - On the Complexity of Differentially Private Best-Arm Identification with
Fixed Confidence [16.295693624977563]
We study the problem of Best Arm Identification with fixed confidence under $epsilon$-global Differential Privacy.
Our lower bound suggests the existence of two privacy regimes depending on the privacy budget.
We propose AdaP-TT, an $epsilon$-global DP variant of the Top Two algorithm.
arXiv Detail & Related papers (2023-09-05T13:07:25Z) - Privacy Amplification via Shuffling: Unified, Simplified, and Tightened [20.10078781197001]
We propose a comprehensive framework for privacy amplification in both single-message and multi-message shuffle protocols.
Our theoretical results demonstrate that our framework provides tighter bounds, especially for local randomizers with extremal probability design.
Our bounds also result in a remarkably efficient $tildeO(n)$ algorithm that numerically amplifies privacy in less than $10$ seconds for $n=108$ users.
arXiv Detail & Related papers (2023-04-11T06:27:25Z) - Discrete Distribution Estimation under User-level Local Differential
Privacy [37.65849910114053]
We study discrete distribution estimation under user-level local differential privacy (LDP)
In user-level $varepsilon$-LDP, each user has $mge1$ samples and the privacy of all $m$ samples must be preserved simultaneously.
arXiv Detail & Related papers (2022-11-07T18:29:32Z) - Reaching Goals is Hard: Settling the Sample Complexity of the Stochastic
Shortest Path [106.37656068276902]
We study the sample complexity of learning an $epsilon$-optimal policy in the Shortest Path (SSP) problem.
We derive complexity bounds when the learner has access to a generative model.
We show that there exists a worst-case SSP instance with $S$ states, $A$ actions, minimum cost $c_min$, and maximum expected cost of the optimal policy over all states $B_star$.
arXiv Detail & Related papers (2022-10-10T18:34:32Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Normalized/Clipped SGD with Perturbation for Differentially Private
Non-Convex Optimization [94.06564567766475]
DP-SGD and DP-NSGD mitigate the risk of large models memorizing sensitive training data.
We show that these two algorithms achieve similar best accuracy while DP-NSGD is comparatively easier to tune than DP-SGD.
arXiv Detail & Related papers (2022-06-27T03:45:02Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
We characterize privacy guarantees for individual examples when releasing models trained by DP-SGD.
We find that most examples enjoy stronger privacy guarantees than the worst-case bound.
This implies groups that are underserved in terms of model utility simultaneously experience weaker privacy guarantees.
arXiv Detail & Related papers (2022-06-06T13:49:37Z) - DP-PCA: Statistically Optimal and Differentially Private PCA [44.22319983246645]
DP-PCA is a single-pass algorithm that overcomes both limitations.
For sub-Gaussian data, we provide nearly optimal statistical error rates even for $n=tilde O(d)$.
arXiv Detail & Related papers (2022-05-27T02:02:17Z) - Covariance-Aware Private Mean Estimation Without Private Covariance Estimation [10.036088581191592]
We present two sample-efficient differentially private mean estimators for $d$-dimensional (sub)Gaussian distributions.
Our estimators output $tildemu$ such that $| tildemu - mu |_Sigma leq alpha$, where $| cdot |_Sigma$ is the Mahalanobis distance.
arXiv Detail & Related papers (2021-06-24T21:40:07Z) - Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for
Private Learning [74.73901662374921]
A differentially private model degrades the utility drastically when the model comprises a large number of trainable parameters.
We propose an algorithm emphGradient Embedding Perturbation (GEP) towards training differentially private deep models with decent accuracy.
arXiv Detail & Related papers (2021-02-25T04:29:58Z) - Learning with User-Level Privacy [61.62978104304273]
We analyze algorithms to solve a range of learning tasks under user-level differential privacy constraints.
Rather than guaranteeing only the privacy of individual samples, user-level DP protects a user's entire contribution.
We derive an algorithm that privately answers a sequence of $K$ adaptively chosen queries with privacy cost proportional to $tau$, and apply it to solve the learning tasks we consider.
arXiv Detail & Related papers (2021-02-23T18:25:13Z) - The Sample Complexity of Robust Covariance Testing [56.98280399449707]
We are given i.i.d. samples from a distribution of the form $Z = (1-epsilon) X + epsilon B$, where $X$ is a zero-mean and unknown covariance Gaussian $mathcalN(0, Sigma)$.
In the absence of contamination, prior work gave a simple tester for this hypothesis testing task that uses $O(d)$ samples.
We prove a sample complexity lower bound of $Omega(d2)$ for $epsilon$ an arbitrarily small constant and $gamma
arXiv Detail & Related papers (2020-12-31T18:24:41Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
We show that random shuffling amplifies differential privacy guarantees of locally randomized data.
Our result is based on a new approach that is simpler than previous work and extends to approximate differential privacy with nearly the same guarantees.
arXiv Detail & Related papers (2020-12-23T17:07:26Z) - Locally Private Hypothesis Selection [96.06118559817057]
We output a distribution from $mathcalQ$ whose total variation distance to $p$ is comparable to the best such distribution.
We show that the constraint of local differential privacy incurs an exponential increase in cost.
Our algorithms result in exponential improvements on the round complexity of previous methods.
arXiv Detail & Related papers (2020-02-21T18:30:48Z) - Private Mean Estimation of Heavy-Tailed Distributions [10.176795938619417]
We give new upper and lower bounds on the minimax sample complexity of differentially private mean estimation of distributions with bounded $k$-th moments.
We show that $n = Thetaleft(frac1alpha2 + frac1alphafrackk-1varepsilonright)$ samples are necessary and sufficient to estimate the mean to $alpha$-accuracy under $varepsilon$-differential privacy, or any of its common relaxations.
arXiv Detail & Related papers (2020-02-21T18:30:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.