When GNNs meet symmetry in ILPs: an orbit-based feature augmentation approach
- URL: http://arxiv.org/abs/2501.14211v1
- Date: Fri, 24 Jan 2025 03:33:33 GMT
- Title: When GNNs meet symmetry in ILPs: an orbit-based feature augmentation approach
- Authors: Qian Chen, Lei Li, Qian Li, Jianghua Wu, Akang Wang, Ruoyu Sun, Xiaodong Luo, Tsung-Hui Chang, Qingjiang Shi,
- Abstract summary: A common characteristic in integer linear programs (ILPs) is symmetry, allowing variables to be permuted without altering the underlying problem structure.
Classic GNN architectures struggle to differentiate between symmetric variables, which limits their predictive accuracy.
We develop an orbit-based augmentation scheme that first groups symmetric variables and then samples augmented features for each group from a discrete uniform distribution.
- Score: 32.718944771397666
- License:
- Abstract: A common characteristic in integer linear programs (ILPs) is symmetry, allowing variables to be permuted without altering the underlying problem structure. Recently, GNNs have emerged as a promising approach for solving ILPs. However, a significant challenge arises when applying GNNs to ILPs with symmetry: classic GNN architectures struggle to differentiate between symmetric variables, which limits their predictive accuracy. In this work, we investigate the properties of permutation equivariance and invariance in GNNs, particularly in relation to the inherent symmetry of ILP formulations. We reveal that the interaction between these two factors contributes to the difficulty of distinguishing between symmetric variables. To address this challenge, we explore the potential of feature augmentation and propose several guiding principles for constructing augmented features. Building on these principles, we develop an orbit-based augmentation scheme that first groups symmetric variables and then samples augmented features for each group from a discrete uniform distribution. Empirical results demonstrate that our proposed approach significantly enhances both training efficiency and predictive performance.
Related papers
- Predicting symmetries of quantum dynamics with optimal samples [41.42817348756889]
Identifying symmetries in quantum dynamics is a crucial challenge with profound implications for quantum technologies.
We introduce a unified framework combining group representation theory and subgroup hypothesis testing to predict these symmetries with optimal efficiency.
We prove that parallel strategies achieve the same performance as adaptive or indefinite-causal-order protocols.
arXiv Detail & Related papers (2025-02-03T15:57:50Z) - Relative Representations: Topological and Geometric Perspectives [53.88896255693922]
Relative representations are an established approach to zero-shot model stitching.
We introduce a normalization procedure in the relative transformation, resulting in invariance to non-isotropic rescalings and permutations.
Second, we propose to deploy topological densification when fine-tuning relative representations, a topological regularization loss encouraging clustering within classes.
arXiv Detail & Related papers (2024-09-17T08:09:22Z) - Variational Inference Failures Under Model Symmetries: Permutation Invariant Posteriors for Bayesian Neural Networks [43.88179780450706]
We investigate the impact of weight space permutation symmetries on variational inference.
We devise a symmetric symmetrization mechanism for constructing permutation invariant variational posteriors.
We show that the symmetrized distribution has a strictly better fit to the true posterior, and that it can be trained using the original ELBO objective.
arXiv Detail & Related papers (2024-08-10T09:06:34Z) - Relaxing Continuous Constraints of Equivariant Graph Neural Networks for Physical Dynamics Learning [39.25135680793105]
We propose a general Discrete Equivariant Graph Neural Network (DEGNN) that guarantees equivariance to a given discrete point group.
Specifically, we show that such discrete equivariant message passing could be constructed by transforming geometric features into permutation-invariant embeddings.
We show that DEGNN is data efficient, learning with less data, and can generalize across scenarios such as unobserved orientation.
arXiv Detail & Related papers (2024-06-24T03:37:51Z) - Symmetry Breaking and Equivariant Neural Networks [17.740760773905986]
We introduce a novel notion of'relaxed equiinjection'
We show how to incorporate this relaxation into equivariant multilayer perceptronrons (E-MLPs)
The relevance of symmetry breaking is then discussed in various application domains.
arXiv Detail & Related papers (2023-12-14T15:06:48Z) - Oracle-Preserving Latent Flows [58.720142291102135]
We develop a methodology for the simultaneous discovery of multiple nontrivial continuous symmetries across an entire labelled dataset.
The symmetry transformations and the corresponding generators are modeled with fully connected neural networks trained with a specially constructed loss function.
The two new elements in this work are the use of a reduced-dimensionality latent space and the generalization to transformations invariant with respect to high-dimensional oracles.
arXiv Detail & Related papers (2023-02-02T00:13:32Z) - Score-based Causal Representation Learning with Interventions [54.735484409244386]
This paper studies the causal representation learning problem when latent causal variables are observed indirectly.
The objectives are: (i) recovering the unknown linear transformation (up to scaling) and (ii) determining the directed acyclic graph (DAG) underlying the latent variables.
arXiv Detail & Related papers (2023-01-19T18:39:48Z) - Deformation Robust Roto-Scale-Translation Equivariant CNNs [10.44236628142169]
Group-equivariant convolutional neural networks (G-CNNs) achieve significantly improved generalization performance with intrinsic symmetry.
General theory and practical implementation of G-CNNs have been studied for planar images under either rotation or scaling transformation.
arXiv Detail & Related papers (2021-11-22T03:58:24Z) - Permutation-equivariant and Proximity-aware Graph Neural Networks with
Stochastic Message Passing [88.30867628592112]
Graph neural networks (GNNs) are emerging machine learning models on graphs.
Permutation-equivariance and proximity-awareness are two important properties highly desirable for GNNs.
We show that existing GNNs, mostly based on the message-passing mechanism, cannot simultaneously preserve the two properties.
In order to preserve node proximities, we augment the existing GNNs with node representations.
arXiv Detail & Related papers (2020-09-05T16:46:56Z) - Inverse Learning of Symmetries [71.62109774068064]
We learn the symmetry transformation with a model consisting of two latent subspaces.
Our approach is based on the deep information bottleneck in combination with a continuous mutual information regulariser.
Our model outperforms state-of-the-art methods on artificial and molecular datasets.
arXiv Detail & Related papers (2020-02-07T13:48:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.