Out-of-time-order correlator computation based on discrete truncated Wigner approximation
- URL: http://arxiv.org/abs/2501.14221v1
- Date: Fri, 24 Jan 2025 03:55:12 GMT
- Title: Out-of-time-order correlator computation based on discrete truncated Wigner approximation
- Authors: Tatsuhiko Shirai, Takashi Mori,
- Abstract summary: We propose a method based on the discrete truncated Wigner approximation (DTWA) for computing out-of-time-order correlators.
This work provides a new technique to study scrambling dynamics in long-range interacting quantum spin systems.
- Score: 4.604003661048267
- License:
- Abstract: We propose a method based on the discrete truncated Wigner approximation (DTWA) for computing out-of-time-order correlators. This method is applied to long-range interacting quantum spin systems where the interactions decay as a power law with distance. As a demonstration, we use a squared commutator of local operators and its higher-order extensions that describe quantum information scrambling under Hamilton dynamics. Our results reveal that the DTWA method accurately reproduces the exact dynamics of the average spreading of quantum information (i.e., the squared commutator) across all time regimes in strongly long-range interacting systems. We also identify limitations in the DTWA method when capturing dynamics in weakly long-range interacting systems and the fastest spreading of quantum information. This work provides a new technique to study scrambling dynamics in long-range interacting quantum spin systems.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Space-time correlations in monitored kinetically constrained discrete-time quantum dynamics [0.0]
We show a kinetically constrained many-body quantum system that has a natural implementation on Rydberg quantum simulators.
Despite featuring an uncorrelated infinite-temperature average stationary state, the dynamics displays coexistence of fast and slow space-time regions.
Our work establishes the large deviation framework for discrete-time open quantum many-body systems as a means to characterize complex dynamics and collective phenomena in quantum processors and simulators.
arXiv Detail & Related papers (2024-08-19T10:24:07Z) - Onset of scrambling as a dynamical transition in tunable-range quantum
circuits [0.0]
We identify a dynamical transition marking the onset of scrambling in quantum circuits with different levels of long-range connectivity.
We show that as a function of the interaction range for circuits of different structures, the tripartite mutual information exhibits a scaling collapse.
In addition to systems with conventional power-law interactions, we identify the same phenomenon in deterministic, sparse circuits.
arXiv Detail & Related papers (2023-04-19T17:37:10Z) - Exact Quantum Dynamics, Shortcuts to Adiabaticity, and Quantum Quenches
in Strongly-Correlated Many-Body Systems: The Time-Dependent Jastrow Ansatz [3.0616044531734192]
We introduce a generalization of the Jastrow ansatz for time-dependent wavefunctions.
It provides an efficient and exact description of the time-evolution of a variety of systems exhibiting strong correlations.
arXiv Detail & Related papers (2022-10-26T18:00:03Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - A variational quantum eigensolver for dynamic correlation functions [0.9176056742068814]
We show how the calculation of zero-temperature dynamic correlation functions can be recast into a modified VQE algorithm.
This allows for important physical expectation values describing the dynamics of the system to be directly converged on the frequency axis.
We believe the approach shows potential for the extraction of frequency dynamics of correlated systems on near-term quantum processors.
arXiv Detail & Related papers (2021-05-04T18:52:45Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - A discrete memory-kernel for multi-time correlations in non-Markovian
quantum processes [0.0]
We show that the transfer-tensor method can be extended to processes which include multiple interrogations.
Our approach exploits the process-tensor description of open quantum processes to represent and propagate the dynamics.
arXiv Detail & Related papers (2020-07-07T07:00:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.