論文の概要: $SpikePack$: Enhanced Information Flow in Spiking Neural Networks with High Hardware Compatibility
- arxiv url: http://arxiv.org/abs/2501.14484v2
- Date: Sun, 02 Feb 2025 03:05:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:07:09.199812
- Title: $SpikePack$: Enhanced Information Flow in Spiking Neural Networks with High Hardware Compatibility
- Title(参考訳): $SpikePack$: ハードウェア互換性の高いスパイキングニューラルネットワークにおける情報フローの強化
- Authors: Guobin Shen, Jindong Li, Tenglong Li, Dongcheng Zhao, Yi Zeng,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、エネルギー効率が高く生物学的にインスパイアされたコンピューティングを約束する。
我々は,膜電位リセットや漏洩結合といった重要な機能を保ちながら,透過損失を低減するために設計されたニューロンモデルである$SpikePack$を紹介した。
- 参考スコア(独自算出の注目度): 6.569750512966661
- License:
- Abstract: Spiking Neural Networks (SNNs) hold promise for energy-efficient, biologically inspired computing. We identify substantial informatio loss during spike transmission, linked to temporal dependencies in traditional Leaky Integrate-and-Fire (LIF) neuron-a key factor potentially limiting SNN performance. Existing SNN architectures also underutilize modern GPUs, constrained by single-bit spike storage and isolated weight-spike operations that restrict computational efficiency. We introduce ${SpikePack}$, a neuron model designed to reduce transmission loss while preserving essential features like membrane potential reset and leaky integration. ${SpikePack}$ achieves constant $\mathcal{O}(1)$ time and space complexity, enabling efficient parallel processing on GPUs and also supporting serial inference on existing SNN hardware accelerators. Compatible with standard Artificial Neural Network (ANN) architectures, ${SpikePack}$ facilitates near-lossless ANN-to-SNN conversion across various networks. Experimental results on tasks such as image classification, detection, and segmentation show ${SpikePack}$ achieves significant gains in accuracy and efficiency for both directly trained and converted SNNs over state-of-the-art models. Tests on FPGA-based platforms further confirm cross-platform flexibility, delivering high performance and enhanced sparsity. By enhancing information flow and rethinking SNN-ANN integration, ${SpikePack}$ advances efficient SNN deployment across diverse hardware platforms.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、エネルギー効率が高く生物学的にインスパイアされたコンピューティングを約束する。
従来の Leaky Integrate-and-Fire(LIF) ニューロンは,SNN の性能を阻害する可能性のある重要な因子である。
既存のSNNアーキテクチャでは、シングルビットスパイクストレージと計算効率を制限する分離されたウェイトスパイク操作によって制約された、現代的なGPUも利用できない。
我々は,膜電位リセットや漏洩結合といった重要な機能を保ちながら,透過損失を低減するために設計されたニューロンモデルである{SpikePack}$を紹介した。
${SpikePack}$は定数$\mathcal{O}(1)の時間と空間の複雑さを実現し、GPU上で効率的な並列処理を可能にし、既存のSNNハードウェアアクセラレータでのシリアル推論をサポートする。
標準的なニューラルネットワーク(ANN)アーキテクチャと互換性のある${SpikePack}$は、さまざまなネットワーク間で、ほぼロスレスなANN-to-SNN変換を容易にする。
画像分類、検出、セグメンテーションなどのタスクの実験結果から、${SpikePack}$は、最先端モデルよりも直接訓練されたSNNと変換されたSNNの精度と効率を大幅に向上させる。
FPGAベースのプラットフォーム上でのテストは、クロスプラットフォームの柔軟性をさらに確認し、高いパフォーマンスと拡張されたスパシティを提供する。
情報フローの強化とSNN-ANN統合の再考により、${SpikePack}$は、さまざまなハードウェアプラットフォームにまたがる効率的なSNNデプロイメントを向上する。
関連論文リスト
- Accurate Mapping of RNNs on Neuromorphic Hardware with Adaptive Spiking Neurons [2.9410174624086025]
我々は、SigmaDelta$-low-pass RNN(lpRNN)を、レートベースのRNNをスパイクニューラルネットワーク(SNN)にマッピングするために提示する。
適応スパイキングニューロンモデルは、$SigmaDelta$-modulationを使って信号を符号化し、正確なマッピングを可能にする。
我々は、Intelのニューロモルフィック研究チップLoihiにおけるlpRNNの実装を実演する。
論文 参考訳(メタデータ) (2024-07-18T14:06:07Z) - High-Performance Temporal Reversible Spiking Neural Networks with $O(L)$ Training Memory and $O(1)$ Inference Cost [32.44622524827913]
スパイキングニューラルネットワーク(SNN)は、トレーニング中のメモリ要求を増大させ、推論エネルギーコストを増大させる。
本研究では、トレーニングと推論の課題に共同で取り組むために、SNN(T-RevSNN)のための新しい時間的可逆アーキテクチャを提案する。
T-RevSNNはImageNet上で優れた精度を実現し、メモリ効率、トレーニング時間加速度、推論エネルギー効率を大幅に改善することができる。
論文 参考訳(メタデータ) (2024-05-26T07:26:56Z) - LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
スパイキングニューラルネットワーク(SNN)は人間の脳の情報処理機構を模倣し、エネルギー効率が高い。
本稿では,空間圧縮と時間圧縮の両方を自動ネットワーク設計プロセスに組み込むLitE-SNNという新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-26T05:23:11Z) - Spiker+: a framework for the generation of efficient Spiking Neural
Networks FPGA accelerators for inference at the edge [49.42371633618761]
Spiker+はFPGA上で、エッジでの推論のために効率よく、低消費電力で、低領域でカスタマイズされたSpking Neural Networks(SNN)アクセラレータを生成するためのフレームワークである。
Spiker+ は MNIST と Spiking Heidelberg Digits (SHD) の2つのベンチマークデータセットでテストされている。
論文 参考訳(メタデータ) (2024-01-02T10:42:42Z) - Highly Efficient SNNs for High-speed Object Detection [7.3074002563489024]
実験結果から, 物体検出タスクにおいて, 1.5MBのパラメータしか持たないGPU上で, 効率的なSNNが118倍の高速化を実現できることが示唆された。
FPGAプラットフォーム上でのSNNをさらに検証し,800以上のFPSオブジェクトを極めて低レイテンシで検出できるモデルを提案する。
論文 参考訳(メタデータ) (2023-09-27T10:31:12Z) - Are SNNs Truly Energy-efficient? $-$ A Hardware Perspective [7.539212567508529]
スパイキングニューラルネットワーク(SNN)は、そのエネルギー効率のよい機械学習能力に注目を集めている。
本研究では,SATAとSpikeSimという,大規模SNN推論のための2つのハードウェアベンチマークプラットフォームについて検討する。
論文 参考訳(メタデータ) (2023-09-06T22:23:22Z) - SpikeSim: An end-to-end Compute-in-Memory Hardware Evaluation Tool for
Benchmarking Spiking Neural Networks [4.0300632886917]
SpikeSimは、IMCマップされたSNNの現実的なパフォーマンス、エネルギ、レイテンシ、領域評価を実現するツールである。
神経モジュールの面積の1.24倍と10倍に減少するSNNトポロジカルな変化と全エネルギー・遅延生成値を提案する。
論文 参考訳(メタデータ) (2022-10-24T01:07:17Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNN) は、BNNの圧縮と高速化に適した新しいタイプのバイナリ量子化設計である。
SNNは、微細な畳み込みカーネル空間におけるバイナリ量子化を利用するカーネル対応最適化フレームワークで訓練されている。
ビジュアル認識ベンチマークの実験とFPGA上でのハードウェア展開は、SNNの大きな可能性を検証する。
論文 参考訳(メタデータ) (2021-10-18T11:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。