Accelerated Preference Elicitation with LLM-Based Proxies
- URL: http://arxiv.org/abs/2501.14625v1
- Date: Fri, 24 Jan 2025 16:42:47 GMT
- Title: Accelerated Preference Elicitation with LLM-Based Proxies
- Authors: David Huang, Francisco Marmolejo-CossÃo, Edwin Lock, David Parkes,
- Abstract summary: We propose a family of efficient proxy designs for eliciting preferences from bidders using natural language.
Our proposed mechanism combines LLM pipelines and DNF-proper-learning techniques to quickly approximate preferences when communication is limited.
- Score: 0.46498278084317696
- License:
- Abstract: Bidders in combinatorial auctions face significant challenges when describing their preferences to an auctioneer. Classical work on preference elicitation focuses on query-based techniques inspired from proper learning--often via proxies that interface between bidders and an auction mechanism--to incrementally learn bidder preferences as needed to compute efficient allocations. Although such elicitation mechanisms enjoy theoretical query efficiency, the amount of communication required may still be too cognitively taxing in practice. We propose a family of efficient LLM-based proxy designs for eliciting preferences from bidders using natural language. Our proposed mechanism combines LLM pipelines and DNF-proper-learning techniques to quickly approximate preferences when communication is limited. To validate our approach, we create a testing sandbox for elicitation mechanisms that communicate in natural language. In our experiments, our most promising LLM proxy design reaches approximately efficient outcomes with five times fewer queries than classical proper learning based elicitation mechanisms.
Related papers
- LLM-Powered Preference Elicitation in Combinatorial Assignment [17.367432304040662]
We study the potential of large language models (LLMs) as proxies for humans to simplify preference elicitation (PE) in assignment.
We propose a framework for LLM proxies that can work in tandem with SOTA ML-powered preference elicitation schemes.
We experimentally evaluate the efficiency of LLM proxies against human queries in the well-studied course allocation domain.
arXiv Detail & Related papers (2025-02-14T17:12:20Z) - Efficient and Deployable Knowledge Infusion for Open-World Recommendations via Large Language Models [53.547190001324665]
We propose REKI to acquire two types of external knowledge about users and items from large language models (LLMs)
We develop individual knowledge extraction and collective knowledge extraction tailored for different scales of scenarios, effectively reducing offline resource consumption.
Experiments demonstrate that REKI outperforms state-of-the-art baselines and is compatible with lots of recommendation algorithms and tasks.
arXiv Detail & Related papers (2024-08-20T03:45:24Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.
Our proposed framework incorporates retrieval-augmented generation (RAG) to enhance the system's ability to acquire domain-specific knowledge and generate solutions.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
We show that different prompts should be adapted to different Large Language Models (LLM) to enhance their capabilities across various downstream tasks in NLP.
We then propose a model-adaptive prompt (MAPO) method that optimize the original prompts for each specific LLM in downstream tasks.
arXiv Detail & Related papers (2024-07-04T18:39:59Z) - Are Large Language Models Good Prompt Optimizers? [65.48910201816223]
We conduct a study to uncover the actual mechanism of LLM-based Prompt Optimization.
Our findings reveal that the LLMs struggle to identify the true causes of errors during reflection, tending to be biased by their own prior knowledge.
We introduce a new "Automatic Behavior Optimization" paradigm, which directly optimize the target model's behavior in a more controllable manner.
arXiv Detail & Related papers (2024-02-03T09:48:54Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
We aim to enhance arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization.
We identify a previously overlooked objective of query dependency in such optimization.
We introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data.
arXiv Detail & Related papers (2023-09-13T01:12:52Z) - Machine Learning-Powered Combinatorial Clock Auction [13.724491757145385]
We study the design of iterative auctions (ICAs)
We present a novel method for training an ML model on demand queries.
We experimentally evaluate our ML-based demand mechanism in several spectrum auction domains.
arXiv Detail & Related papers (2023-08-20T10:43:50Z) - PRISMA-DFLLM: An Extension of PRISMA for Systematic Literature Reviews
using Domain-specific Finetuned Large Language Models [0.0]
This paper proposes an AI-enabled methodological framework that combines the power of Large Language Models (LLMs) with the rigorous reporting guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
By finetuning LLMs on domain-specific academic papers that have been selected as a result of a rigorous SLR process, the proposed PRISMA-DFLLM reporting guidelines offer the potential to achieve greater efficiency, reusability and scalability.
arXiv Detail & Related papers (2023-06-15T02:52:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.