論文の概要: Artificial Intelligence for Sustainable Urban Biodiversity: A Framework for Monitoring and Conservation
- arxiv url: http://arxiv.org/abs/2501.14766v1
- Date: Sat, 28 Dec 2024 03:18:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-02 21:31:26.77665
- Title: Artificial Intelligence for Sustainable Urban Biodiversity: A Framework for Monitoring and Conservation
- Title(参考訳): 持続可能な都市生物多様性のための人工知能:モニタリングと保全のためのフレームワーク
- Authors: Yasmin Rahmati,
- Abstract要約: 都市部の急速な拡大は生物多様性の保全に挑戦し、革新的な生態系管理を必要としている。
本研究では, 都市生物多様性保全における人工知能(AI)の役割とその応用, 実装の枠組みについて検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid expansion of urban areas challenges biodiversity conservation, requiring innovative ecosystem management. This study explores the role of Artificial Intelligence (AI) in urban biodiversity conservation, its applications, and a framework for implementation. Key findings show that: (a) AI enhances species detection and monitoring, achieving over 90% accuracy in urban wildlife tracking and invasive species management; (b) integrating data from remote sensing, acoustic monitoring, and citizen science enables large-scale ecosystem analysis; and (c) AI decision tools improve conservation planning and resource allocation, increasing prediction accuracy by up to 18.5% compared to traditional methods. The research presents an AI-Driven Framework for Urban Biodiversity Management, highlighting AI's impact on monitoring, conservation strategies, and ecological outcomes. Implementation strategies include: (a) standardizing data collection and model validation, (b) ensuring equitable AI access across urban contexts, and (c) developing ethical guidelines for biodiversity monitoring. The study concludes that integrating AI in urban biodiversity conservation requires balancing innovation with ecological wisdom and addressing data quality, socioeconomic disparities, and ethical concerns.
- Abstract(参考訳): 都市部の急速な拡大は生物多様性の保全に挑戦し、革新的な生態系管理を必要としている。
本研究では, 都市生物多様性保全における人工知能(AI)の役割とその応用, 実装の枠組みについて検討する。
主な発見は以下のとおりである。
(a)AIは、種の検出及びモニタリングを強化し、都市野生生物の追跡及び外来種の管理において90%以上の精度を達成する。
ロ)リモートセンシング、音響モニタリング、市民科学からのデータの統合により、大規模生態系分析が可能となる。
(c)AI決定ツールは、従来の方法と比較して、保全計画と資源配分を改善し、予測精度を最大18.5%向上させる。
この研究は、都市生物多様性管理のためのAI駆動フレームワークを提示し、監視、保全戦略、生態学的結果に対するAIの影響を強調している。
実施戦略には以下のものがある。
(a)データの収集とモデルの検証の標準化。
(b)都市の状況にまたがる公平なAIアクセスを確保すること、
(c)生物多様性モニタリングのための倫理ガイドラインの策定。
この研究は、AIを都市生物多様性の保全に統合するには、イノベーションを生態学的知恵とバランスさせ、データ品質、社会経済的格差、倫理的懸念に対処する必要があると結論付けている。
関連論文リスト
- Bridging the Gap: Integrating Ethics and Environmental Sustainability in AI Research and Practice [57.94036023167952]
我々は、AIの倫理的影響を研究するための努力は、その環境への影響を評価するものと相まって行われるべきであると論じる。
我々は,AI研究と実践にAI倫理と持続可能性を統合するためのベストプラクティスを提案する。
論文 参考訳(メタデータ) (2025-04-01T13:53:11Z) - Inteligencia Artificial para la conservación y uso sostenible de la biodiversidad, una visión desde Colombia (Artificial Intelligence for conservation and sustainable use of biodiversity, a view from Colombia) [0.0]
本論文は,コロンビアとネオトロピックに焦点をあてた視点から,この研究領域の範囲を分析することを目的としている。
本稿では,画像や記録からの自動種識別,種モデリング,シリコバイオプロスペクションなどの用途について紹介する。
また、現地の文脈におけるAIの責任と倫理的採用を促進する政策の開発に関する対話の場を開こうとしている。
論文 参考訳(メタデータ) (2025-03-17T16:47:05Z) - Identifying Trustworthiness Challenges in Deep Learning Models for Continental-Scale Water Quality Prediction [64.4881275941927]
本稿では,大陸規模のマルチタスクLSTMモデルにおいて,信頼性の総合評価を行う。
本研究は,流域特性に関連するモデル性能格差の系統的パターンを明らかにする。
この作業は、水資源管理のための信頼できるデータ駆動手法を前進させるためのタイムリーな呼びかけとして役立ちます。
論文 参考訳(メタデータ) (2025-03-13T01:50:50Z) - Strategic priorities for transformative progress in advancing biology with proteomics and artificial intelligence [54.14779179869007]
データ分析から新たな生物学的洞察に至るまで、AIがイノベーションを推進している重要な領域を強調します。
その中には、データ生成、共有、分析のためのAIフレンドリーなエコシステムの開発も含まれる。
論文 参考訳(メタデータ) (2025-02-21T13:20:33Z) - AI-Driven Real-Time Monitoring of Ground-Nesting Birds: A Case Study on Curlew Detection Using YOLOv10 [0.07255608805275862]
本研究は,カリュー(Numenius arquata)に着目したAIによるリアルタイム種検出手法を提案する。
カスタムトレーニングされたYOLOv10モデルは、Create AIプラットフォームにリンクされた3/4G対応カメラを使用して、カリューとそのニワトリを検知し、分類するために開発された。
ウェールズの11箇所で、このモデルは高い性能を達成し、感度は90.56%、特異度は100%、F1スコアは95.05%だった。
論文 参考訳(メタデータ) (2024-11-22T10:36:29Z) - Harnessing Artificial Intelligence for Wildlife Conservation [0.0937465283958018]
保護AIは、視覚スペクトルと熱赤外線カメラを使用して、動物、人間、密猟に関連する物体を検出し、分類する。
このプラットフォームは、このデータを畳み込みニューラルネットワーク(CNN)とTransformerアーキテクチャで処理し、種を監視する。
ヨーロッパ、北アメリカ、アフリカ、東南アジアの事例研究は、このプラットフォームが種の識別、生物多様性の監視、密猟防止に成功していることを強調している。
論文 参考訳(メタデータ) (2024-08-30T09:13:31Z) - Artificial Intelligence in Sustainable Vertical Farming [0.0]
持続可能な垂直農業におけるAIの役割を包括的に探求する。
このレビューは、機械学習、コンピュータビジョン、IoT(Internet of Things)、ロボット工学を含む、AIアプリケーションの現状を合成する。
この影響は、経済的な可能性、環境への影響の低減、食料安全保障の向上など、効率の向上を超えて拡大している。
論文 参考訳(メタデータ) (2023-11-17T22:15:41Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
本稿では,市民科学データベース eBird の観測データから得られたラベルを用いた,米国内の位置情報のサテライトデータセットである SatBird について述べる。
ケニアでは低データのレシエーションを表すデータセットも提供しています。
リモートセンシングタスクのためのSOTAモデルを含む、データセットのベースラインセットをベンチマークします。
論文 参考訳(メタデータ) (2023-11-02T02:00:27Z) - Predictable Artificial Intelligence [77.1127726638209]
本稿では予測可能なAIのアイデアと課題を紹介する。
それは、現在および将来のAIエコシステムの重要な妥当性指標を予測できる方法を探る。
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - Elephants and Algorithms: A Review of the Current and Future Role of AI
in Elephant Monitoring [47.24825031148412]
人工知能(AI)と機械学習(ML)は、動物行動と保全戦略の理解を深める革命的な機会を提供する。
アフリカ保護地域の重要な種であるゾウを焦点として、我々はAIとMLが保護に果たす役割を掘り下げる。
新しいAIとML技術は、このプロセスを合理化するためのソリューションを提供する。
論文 参考訳(メタデータ) (2023-06-23T22:35:51Z) - An Empirical Analysis of AI Contributions to Sustainable Cities (SDG11) [4.56877715768796]
AIの応用は、17の持続可能な開発目標に大きく影響している。
SDG 11(持続可能な都市・コミュニティ)の進展を支えるためのAIの貢献を分析する。
われわれの分析によると、AIシステムはいくつかの方法で持続可能な都市の発展に寄与している。
論文 参考訳(メタデータ) (2022-02-06T22:30:23Z) - Seeing biodiversity: perspectives in machine learning for wildlife
conservation [49.15793025634011]
機械学習は、野生生物種の理解、モニタリング能力、保存性を高めるために、この分析的な課題を満たすことができると我々は主張する。
本質的に、新しい機械学習アプローチとエコロジー分野の知識を組み合わせることで、動物生態学者は現代のセンサー技術が生み出すデータの豊富さを生かすことができる。
論文 参考訳(メタデータ) (2021-10-25T13:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。