論文の概要: Interpretability in Parameter Space: Minimizing Mechanistic Description Length with Attribution-based Parameter Decomposition
- arxiv url: http://arxiv.org/abs/2501.14926v2
- Date: Tue, 28 Jan 2025 09:51:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 13:21:37.577516
- Title: Interpretability in Parameter Space: Minimizing Mechanistic Description Length with Attribution-based Parameter Decomposition
- Title(参考訳): パラメータ空間の解釈可能性:属性に基づくパラメータ分解による機械的記述長の最小化
- Authors: Dan Braun, Lucius Bushnaq, Stefan Heimersheim, Jake Mendel, Lee Sharkey,
- Abstract要約: 我々は、属性に基づく分解(APD)の概念的基礎を導入する。
APDは、ニューラルネットワークのパラメータを直接、元のネットワークのパラメータに忠実なコンポーネントに分解する。
玩具実験環境における地中真理メカニズムの同定に成功してAPDの有効性を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Mechanistic interpretability aims to understand the internal mechanisms learned by neural networks. Despite recent progress toward this goal, it remains unclear how best to decompose neural network parameters into mechanistic components. We introduce Attribution-based Parameter Decomposition (APD), a method that directly decomposes a neural network's parameters into components that (i) are faithful to the parameters of the original network, (ii) require a minimal number of components to process any input, and (iii) are maximally simple. Our approach thus optimizes for a minimal length description of the network's mechanisms. We demonstrate APD's effectiveness by successfully identifying ground truth mechanisms in multiple toy experimental settings: Recovering features from superposition; separating compressed computations; and identifying cross-layer distributed representations. While challenges remain to scaling APD to non-toy models, our results suggest solutions to several open problems in mechanistic interpretability, including identifying minimal circuits in superposition, offering a conceptual foundation for 'features', and providing an architecture-agnostic framework for neural network decomposition.
- Abstract(参考訳): 機械的解釈可能性(Mechanistic Interpretability)は、ニューラルネットワークによって学習される内部メカニズムを理解することを目的としている。
この目標に向けた最近の進歩にもかかわらず、ニューラルネットワークパラメータをメカニスティックなコンポーネントに分解する方法は、まだ不明である。
我々は、ニューラルネットワークのパラメータを直接分解する手法であるAttribution-based Parameter Decomposition (APD)を紹介した。
i)元のネットワークのパラメータに忠実である。
(ii)任意の入力を処理するために最小限のコンポーネントを必要とし、
(iii)は極端に単純である。
そこで本手法では,ネットワーク機構の最小長記述を最適化する。
重ね合わせから特徴を回収し,圧縮された計算を分離し,層間分散表現を同定する。
非トイモデルへのAPDのスケーリングには依然として課題があるが、我々の結果は、重ね合わせ中の最小回路の特定、"機能"の概念的基盤の提供、ニューラルネットワーク分解のためのアーキテクチャに依存しないフレームワークの提供など、機械的解釈可能性に関するいくつかのオープンな問題に対する解決策を提案する。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Semantic Loss Functions for Neuro-Symbolic Structured Prediction [74.18322585177832]
このような構造に関する知識を象徴的に定義した意味的損失をトレーニングに注入する。
記号の配置に非依存であり、それによって表現される意味論にのみ依存する。
識別型ニューラルモデルと生成型ニューラルモデルの両方と組み合わせることができる。
論文 参考訳(メタデータ) (2024-05-12T22:18:25Z) - Adaptive Multilevel Neural Networks for Parametric PDEs with Error Estimation [0.0]
ニューラルネットワークアーキテクチャは高次元パラメータ依存偏微分方程式(pPDE)を解くために提示される
モデルデータのパラメータを対応する有限要素解にマッピングするために構築される。
適応有限要素法(AFEM)で生成される粗いグリッド解と一連の補正を出力する。
論文 参考訳(メタデータ) (2024-03-19T11:34:40Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
制約のあるリソースに大規模ディープニューラルネットワークをデプロイするための新しいアプローチを導入する。
この手法は推論時間を短縮し、メモリ需要と消費電力を減らすことを目的とする。
論文 参考訳(メタデータ) (2022-12-25T15:40:05Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
本稿では,畳み込み型アーキテクチャサーチ(VTCAS)を用いたアーキテクチャ探索手法を提案する。
VTCASによって探索された高性能バックボーンネットワークは、畳み込みニューラルネットワークの望ましい特徴をトランスフォーマーアーキテクチャに導入する。
これは、特に低照度屋内シーンにおいて、物体認識のためのニューラルネットワークの堅牢性を高める。
論文 参考訳(メタデータ) (2022-03-20T02:59:51Z) - Improving Parametric Neural Networks for High-Energy Physics (and
Beyond) [0.0]
本研究の目的は,現実世界の使用状況に照らして,パラメトリックニューラルネットワーク(pNN)ネットワークの理解を深めることである。
本稿では,新しいパラメータ化ニューラルネットワークアーキテクチャであるAffinePNNを提案する。
我々は、その不均衡バージョン(HEPMASS-IMB)に沿って、HEPMASSデータセット上で、我々のモデルを広範囲に評価する。
論文 参考訳(メタデータ) (2022-02-01T14:18:43Z) - Conditionally Parameterized, Discretization-Aware Neural Networks for
Mesh-Based Modeling of Physical Systems [0.0]
入力パラメータのトレーニング可能な関数を用いて条件パラメトリゼーションの考え方を一般化する。
条件パラメータ化ネットワークは従来のネットワークに比べて優れた性能を示すことを示す。
CP-GNetと呼ばれるネットワークアーキテクチャも、メッシュ上のフローのスタンドアロン予測に反応可能な最初のディープラーニングモデルとして提案されている。
論文 参考訳(メタデータ) (2021-09-15T20:21:13Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
ディープニューラルネットワーク(DNN)モデルは、特にリソース制限されたデバイスにおいて、実用的なアプリケーションに不可欠である。
既往の非構造的あるいは構造化された重量刈り法は、推論を真に加速することはほとんど不可能である。
ハードウェア互換のマイクロ構造レベルでの一般化された重み統一フレームワークを提案し,高い圧縮と加速度を実現する。
論文 参考訳(メタデータ) (2021-06-15T17:22:59Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。