論文の概要: Group Ligands Docking to Protein Pockets
- arxiv url: http://arxiv.org/abs/2501.15055v1
- Date: Sat, 25 Jan 2025 03:36:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:55:10.864535
- Title: Group Ligands Docking to Protein Pockets
- Title(参考訳): タンパク質ポケットにドッキングするグループリガンド
- Authors: Jiaqi Guan, Jiahan Li, Xiangxin Zhou, Xingang Peng, Sheng Wang, Yunan Luo, Jian Peng, Jianzhu Ma,
- Abstract要約: タンパク質への複数の三角形ドッキングを同時に検討する新しい分子ドッキングフレームワークであるtextscGroupBindを提案する。
我々はPDBBindブラインドドッキングベンチマークに新しいS性能を設定し、提案した分子ドッキングパラダイムの有効性を実証した。
- 参考スコア(独自算出の注目度): 25.198533538897966
- License:
- Abstract: Molecular docking is a key task in computational biology that has attracted increasing interest from the machine learning community. While existing methods have achieved success, they generally treat each protein-ligand pair in isolation. Inspired by the biochemical observation that ligands binding to the same target protein tend to adopt similar poses, we propose \textsc{GroupBind}, a novel molecular docking framework that simultaneously considers multiple ligands docking to a protein. This is achieved by introducing an interaction layer for the group of ligands and a triangle attention module for embedding protein-ligand and group-ligand pairs. By integrating our approach with diffusion-based docking model, we set a new S performance on the PDBBind blind docking benchmark, demonstrating the effectiveness of our proposed molecular docking paradigm.
- Abstract(参考訳): 分子ドッキングは計算生物学における重要な課題であり、機械学習コミュニティからの関心が高まっている。
既存の手法は成功したが、一般にそれぞれのタンパク質-リガンド対を分離して扱う。
同じ標的タンパク質に結合するリガンドが類似する傾向にあるという生化学的観察に着想を得て,複数のリガンドを同時に結合する新しい分子ドッキングフレームワークである \textsc{GroupBind} を提案する。
これは、リガンドのグループのための相互作用層と、タンパク質-リガンドとグループ-リガンドのペアを埋め込む三角形のアテンションモジュールを導入することで達成される。
本手法を拡散型ドッキングモデルと統合することにより,PDBBindブラインドドッキングベンチマークに新しいS性能を設定し,分子ドッキングパラダイムの有効性を実証した。
関連論文リスト
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - Deep Learning for Protein-Ligand Docking: Are We There Yet? [5.721438704473567]
広範に適用可能なタンパク質リガンドドッキングのための、最初の包括的なベンチマークであるPoseBenchを紹介する。
PoseBenchは、Apo-to-holoタンパク質-リガンドドッキングとタンパク質-リガンド構造予測のためのDLメソッドを厳格かつ体系的に評価することを可能にする。
論文 参考訳(メタデータ) (2024-05-23T02:27:39Z) - Re-Dock: Towards Flexible and Realistic Molecular Docking with Diffusion
Bridge [69.80471117520719]
Re-Dockは、幾何学多様体に拡張された新しい拡散橋生成モデルである。
我々はNewton-Euler方程式にインスパイアされたエネルギー-幾何学マッピングを提案し、結合エネルギーとコンフォーメーションを共モデリングする。
アポドックやクロスドックといった設計済みのベンチマークデータセットの実験は、現在の手法よりもモデルの有効性と効率性が優れていることを示している。
論文 参考訳(メタデータ) (2024-02-18T05:04:50Z) - Rigid Protein-Protein Docking via Equivariant Elliptic-Paraboloid
Interface Prediction [19.73508673791042]
硬質タンパク質ドッキングの研究は、薬物設計やタンパク質工学といった様々なタスクにおいて重要な役割を担っている。
本稿では,タンパク質-タンパク質ドッキングインタフェースを表現するために,楕円型パラボロイドを予測するElliDockという新しい学習手法を提案する。
その設計上、エリドックはタンパク質の任意の回転/翻訳に関して独立に同型である。
論文 参考訳(メタデータ) (2024-01-17T05:39:03Z) - Protein-ligand binding representation learning from fine-grained
interactions [29.965890962846093]
本稿では,タンパク質-リガンド結合表現を自己教師付き学習方式で学習することを提案する。
この自己教師付き学習問題は、決定的結合複素構造の予測として定式化される。
様々なバインディングタスクに対して,本手法の優位性を示す実験を行った。
論文 参考訳(メタデータ) (2023-11-09T01:33:09Z) - FABind: Fast and Accurate Protein-Ligand Binding [127.7790493202716]
$mathbfFABind$はポケット予測とドッキングを組み合わせたエンドツーエンドモデルで、正確で高速なタンパク質-リガンド結合を実現する。
提案モデルでは,既存手法と比較して有効性と効率性に強い利点が示される。
論文 参考訳(メタデータ) (2023-10-10T16:39:47Z) - DockGame: Cooperative Games for Multimeric Rigid Protein Docking [45.970633276976045]
ドッキングのための新しいゲーム理論フレームワークであるDockGameを紹介した。
タンパク質ドッキングはタンパク質間の協調ゲームであり、最終組み立て構造が安定な平衡を構成する。
Docking Benchmark 5.5データセットでは、DockGameは従来のドッキングメソッドよりもはるかに高速なランタイムを持つ。
論文 参考訳(メタデータ) (2023-10-09T22:02:05Z) - DiffDock-PP: Rigid Protein-Protein Docking with Diffusion Models [47.73386438748902]
DiffDock-PPは拡散生成モデルであり、非有界タンパク質構造をそれらの有界配座に翻訳し回転させる。
中央値C-RMSDが4.85でDIPSの最先端性能を達成し,すべてのベースラインを上回りました。
論文 参考訳(メタデータ) (2023-04-08T02:10:44Z) - Independent SE(3)-Equivariant Models for End-to-End Rigid Protein
Docking [57.2037357017652]
我々は、剛体タンパク質ドッキング、すなわち、個々の非結合構造からタンパク質-タンパク質複合体の3次元構造を計算的に予測する。
本研究では, タンパク質の回転と翻訳を予測し, 1つのタンパク質をドッキング位置に置くために, ペアワイズ非独立なSE(3)-等変グラフマッチングネットワークを設計する。
我々のモデルはEquiDockと呼ばれ、結合ポケットを近似し、キーポイントマッチングとアライメントを用いてドッキングポーズを予測する。
論文 参考訳(メタデータ) (2021-11-15T18:46:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。