論文の概要: A Post-Processing-Based Fair Federated Learning Framework
- arxiv url: http://arxiv.org/abs/2501.15318v1
- Date: Sat, 25 Jan 2025 20:05:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 14:00:22.449103
- Title: A Post-Processing-Based Fair Federated Learning Framework
- Title(参考訳): ポストプロシースに基づくフェアフェデレーション学習フレームワーク
- Authors: Yi Zhou, Naman Goel,
- Abstract要約: Federated Learning(FL)は、中央サーバでローカルデータセットをプールすることなく、分散パーティ間で協調的なモデルトレーニングを可能にする。
FLシステムにおけるグループフェアネスを改善するために、単純で直感的な後処理ベースのフレームワークを定義し、実証的に分析する。
我々の研究は、このフレームワークがFLにおける公正性の実装を単純化するだけでなく、精度の低下や精度の向上を最小限に抑えながら、大幅な公正性の向上をもたらすことを示している。
- 参考スコア(独自算出の注目度): 8.978878439498365
- License:
- Abstract: Federated Learning (FL) allows collaborative model training among distributed parties without pooling local datasets at a central server. However, the distributed nature of FL poses challenges in training fair federated learning models. The existing techniques are often limited in offering fairness flexibility to clients and performance. We formally define and empirically analyze a simple and intuitive post-processing-based framework to improve group fairness in FL systems. This framework can be divided into two stages: a standard FL training stage followed by a completely decentralized local debiasing stage. In the first stage, a global model is trained without fairness constraints using a standard federated learning algorithm (e.g. FedAvg). In the second stage, each client applies fairness post-processing on the global model using their respective local dataset. This allows for customized fairness improvements based on clients' desired and context-guided fairness requirements. We demonstrate two well-established post-processing techniques in this framework: model output post-processing and final layer fine-tuning. We evaluate the framework against three common baselines on four different datasets, including tabular, signal, and image data, each with varying levels of data heterogeneity across clients. Our work shows that this framework not only simplifies fairness implementation in FL but also provides significant fairness improvements with minimal accuracy loss or even accuracy gain, across data modalities and machine learning methods, being especially effective in more heterogeneous settings.
- Abstract(参考訳): Federated Learning(FL)は、中央サーバでローカルデータセットをプールすることなく、分散パーティ間で協調的なモデルトレーニングを可能にする。
しかし、FLの分散的性質は、公正なフェデレーション学習モデルのトレーニングにおいて課題を提起する。
既存のテクニックは、クライアントとパフォーマンスに公正な柔軟性を提供することに制限されることが多い。
FLシステムにおけるグループフェアネスを改善するために、単純で直感的な後処理ベースのフレームワークを正式に定義し、実証的に分析する。
この枠組みは2つの段階に分けられる: 標準的なFL訓練段階と、完全に分散された局所的偏りの段階である。
第一段階では、標準フェデレーション学習アルゴリズム(例えば、FedAvg)を用いて、公正な制約なしにグローバルモデルを訓練する。
第2段階では、各クライアントがそれぞれのローカルデータセットを使用してグローバルモデルに公正な後処理を適用する。
これにより、クライアントが望む、コンテキストに合ったフェアネス要件に基づいた、カスタマイズされたフェアネスの改善が可能になる。
このフレームワークでは、モデル出力後処理と最終層の微調整という、2つの確立された後処理手法を実証する。
このフレームワークは、表、信号、画像データを含む4つの異なるデータセットに対して、クライアント間で異なるレベルのデータの均一性を持つ3つの共通ベースラインに対して評価する。
我々の研究は、このフレームワークがFLの公平性の実装を単純化するだけでなく、データモダリティや機械学習の手法を通じて、精度の低下や精度の向上を最小限に抑え、より不均一な設定で特に有効であることを示す。
関連論文リスト
- WassFFed: Wasserstein Fair Federated Learning [31.135784690264888]
Federated Learning (FL)は、ユーザのデータをクライアント間で共有できないシナリオに対処するためのトレーニングアプローチを採用している。
本稿では,Wasserstein Fair Federated Learningフレームワーク,すなわちWassFFedを提案する。
論文 参考訳(メタデータ) (2024-11-11T11:26:22Z) - Personalized Federated Learning via Feature Distribution Adaptation [3.410799378893257]
Federated Learning(FL)は、分散クライアントデータセット間の共通性を利用してグローバルモデルをトレーニングする分散学習フレームワークである。
パーソナライズド・フェデレーション・ラーニング(PFL)は、各クライアントに適した個々のモデルを学習することで、この問題に対処しようとしている。
我々は,グローバルな生成型分類器を局所的な特徴分布に適応させることで,パーソナライズされたモデルを効率的に生成するアルゴリズム,pFedFDAを提案する。
論文 参考訳(メタデータ) (2024-11-01T03:03:52Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Towards More Suitable Personalization in Federated Learning via
Decentralized Partial Model Training [67.67045085186797]
既存のシステムのほとんどは、中央のFLサーバが失敗した場合、大きな通信負荷に直面しなければならない。
共有パラメータと個人パラメータを交互に更新することで、ディープモデルの「右」をパーソナライズする。
共有パラメータアグリゲーションプロセスをさらに促進するために、ローカルシャープネス最小化を統合するDFedを提案する。
論文 参考訳(メタデータ) (2023-05-24T13:52:18Z) - Visual Prompt Based Personalized Federated Learning [83.04104655903846]
pFedPTと呼ばれる画像分類タスクのための新しいPFLフレームワークを提案し、クライアントのローカルデータ配信情報を暗黙的に表現するためにパーソナライズされた視覚的プロンプトを利用する。
CIFAR10とCIFAR100データセットの実験では、pFedPTは様々な設定でいくつかの最先端(SOTA)PFLアルゴリズムより優れていた。
論文 参考訳(メタデータ) (2023-03-15T15:02:15Z) - FL Games: A Federated Learning Framework for Distribution Shifts [71.98708418753786]
フェデレートラーニングは、サーバのオーケストレーションの下で、クライアント間で分散されたデータの予測モデルをトレーニングすることを目的としている。
本稿では,クライアント間で不変な因果的特徴を学習するフェデレーション学習のためのゲーム理論フレームワークFL GAMESを提案する。
論文 参考訳(メタデータ) (2022-10-31T22:59:03Z) - Group Personalized Federated Learning [15.09115201646396]
フェデレートラーニング(FL)は、クライアントの物理デバイス上で分散的な方法で共有モデルをトレーニングすることで、データのプライバシを促進するのに役立つ。
本稿では,FLの応用に向けたグループパーソナライズ手法を提案する。
論文 参考訳(メタデータ) (2022-10-04T19:20:19Z) - Adapt to Adaptation: Learning Personalization for Cross-Silo Federated
Learning [6.0088002781256185]
従来のフェデレーション学習は、分散データによるクライアントのフェデレーションのためのグローバルモデルをトレーニングすることを目的としている。
非IIDデータセット間の分散シフトは、データヘテロジニティとしても知られ、この1つのグローバルモデルに適合するソリューションにしばしば挑戦する。
我々は、各クライアントが他のクライアントのモデルからどれだけの恩恵を受けることができるかを適応的に学習するパーソナライズされたクロスサイロFLフレームワークであるAPPLEを提案する。
論文 参考訳(メタデータ) (2021-10-15T22:23:14Z) - Federated Multi-Task Learning under a Mixture of Distributions [10.00087964926414]
Federated Learning(FL)は、機械学習モデルのデバイス上での協調トレーニングのためのフレームワークである。
FLにおける最初の取り組みは、クライアント間で平均的なパフォーマンスを持つ単一のグローバルモデルを学ぶことに焦点を当てたが、グローバルモデルは、与えられたクライアントに対して任意に悪いかもしれない。
我々は,各局所データ分布が未知の基底分布の混合であるというフレキシブルな仮定の下で,フェデレーションMTLについて検討した。
論文 参考訳(メタデータ) (2021-08-23T15:47:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。