論文の概要: Guaranteed Multidimensional Time Series Prediction via Deterministic Tensor Completion Theory
- arxiv url: http://arxiv.org/abs/2501.15388v1
- Date: Sun, 26 Jan 2025 04:01:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:55:28.309268
- Title: Guaranteed Multidimensional Time Series Prediction via Deterministic Tensor Completion Theory
- Title(参考訳): 決定論的テンソル補完理論による多次元時系列予測
- Authors: Hao Shu, Jicheng Li, Yu Jin, Hailin Wang,
- Abstract要約: 多次元時系列予測は、広範に応用されているため、ますます重要になっている。
決定論的完備化問題として多次元時系列予測を再構成し,新しい理論的枠組みを提案する。
時間次元に沿って多次元時系列を合成し、核標準を適用することにより、正確な予測のための最大予測地平線を同定する。
- 参考スコア(独自算出の注目度): 5.650147907618974
- License:
- Abstract: In recent years, the prediction of multidimensional time series data has become increasingly important due to its wide-ranging applications. Tensor-based prediction methods have gained attention for their ability to preserve the inherent structure of such data. However, existing approaches, such as tensor autoregression and tensor decomposition, often have consistently failed to provide clear assertions regarding the number of samples that can be exactly predicted. While matrix-based methods using nuclear norms address this limitation, their reliance on matrices limits accuracy and increases computational costs when handling multidimensional data. To overcome these challenges, we reformulate multidimensional time series prediction as a deterministic tensor completion problem and propose a novel theoretical framework. Specifically, we develop a deterministic tensor completion theory and introduce the Temporal Convolutional Tensor Nuclear Norm (TCTNN) model. By convolving the multidimensional time series along the temporal dimension and applying the tensor nuclear norm, our approach identifies the maximum forecast horizon for exact predictions. Additionally, TCTNN achieves superior performance in prediction accuracy and computational efficiency compared to existing methods across diverse real-world datasets, including climate temperature, network flow, and traffic ride data. Our implementation is publicly available at https://github.com/HaoShu2000/TCTNN.
- Abstract(参考訳): 近年,多次元時系列データの予測がますます重要になっている。
テンソルに基づく予測手法は、そのようなデータ固有の構造を保存する能力に注目されている。
しかし、テンソル自己回帰(英語版)やテンソル分解(英語版)のような既存のアプローチは、正確に予測できるサンプルの数に関する明確な主張を一貫して提供しなかった。
原子核ノルムを用いた行列ベースの手法はこの制限に対処するが、行列への依存は精度を制限し、多次元データを扱う際の計算コストを増大させる。
これらの課題を克服するために、決定論的テンソル完備問題として多次元時系列予測を再構成し、新しい理論的枠組みを提案する。
具体的には、決定論的テンソル完備理論を開発し、時間畳み込みテンソル核ノルム(TCTNN)モデルを導入する。
時間次元に沿って多次元時系列を合成し、テンソル核ノルムを適用することにより、正確な予測のための最大予測地平線を同定する。
さらに、TCKNNは、気候温度、ネットワークフロー、交通乗車データなど、さまざまな実世界のデータセットにまたがる既存の手法と比較して、予測精度と計算効率において優れたパフォーマンスを実現している。
私たちの実装はhttps://github.com/HaoShu2000/TCTNNで公開されています。
関連論文リスト
- Relational Conformal Prediction for Correlated Time Series [56.59852921638328]
共形予測フレームワークと量子レグレッションに基づく分布自由な新しい手法を提案する。
グラフ深層学習演算子に基づく新しい共形予測手法を導入することにより,この空白を埋める。
我々のアプローチは、関連するベンチマークにおいて、正確なカバレッジを提供し、最先端の不確実性定量化をアーカイブする。
論文 参考訳(メタデータ) (2025-02-13T16:12:17Z) - Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization [74.3339999119713]
我々はウェーブレットベースのトークンーザを開発し、時間局所化周波数の空間でモデルが複雑な表現を直接学習できるようにする。
提案手法は,まず入力時系列をスケール・分解し,次に閾値を設定し,ウェーブレット係数を定量化し,最後に予測水平方向の係数を予測する自己回帰モデルを事前学習する。
論文 参考訳(メタデータ) (2024-12-06T18:22:59Z) - Sparse Deep Learning for Time Series Data: Theory and Applications [9.878774148693575]
疎いディープラーニングは、ディープニューラルネットワークのパフォーマンスを改善するための一般的なテクニックとなっている。
本稿では,データを用いた疎い深層学習の理論について検討する。
提案手法は時系列データの自己回帰順序を連続的に同定できることを示す。
論文 参考訳(メタデータ) (2023-10-05T01:26:13Z) - Explainable Parallel RCNN with Novel Feature Representation for Time
Series Forecasting [0.0]
時系列予測はデータサイエンスにおける根本的な課題である。
RNNとCNNを組み合わせた並列ディープラーニングフレームワークを開発した。
3つのデータセットに対する大規模な実験により,本手法の有効性が明らかとなった。
論文 参考訳(メタデータ) (2023-05-08T17:20:13Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Sequential Predictive Conformal Inference for Time Series [16.38369532102931]
逐次データ(例えば時系列)に対する分布自由共形予測アルゴリズムを提案する。
具体的には,時系列データは交換不可能であり,既存の共形予測アルゴリズムでは適用できない性質を具体的に説明する。
論文 参考訳(メタデータ) (2022-12-07T05:07:27Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Emulating Spatio-Temporal Realizations of Three-Dimensional Isotropic
Turbulence via Deep Sequence Learning Models [24.025975236316842]
最先端のディープラーニング技術を用いて3次元乱流をモデル化するために,データ駆動方式を用いる。
モデルの精度は、統計および物理に基づくメトリクスを用いて評価される。
論文 参考訳(メタデータ) (2021-12-07T03:33:39Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow
Profile [15.875569404476495]
本稿では,テンソルに基づく予測に焦点をあて,予測を改善するためのいくつかの実践的手法を提案する。
具体的には、長期予測のために「テンソル分解+2次元自己回帰移動平均(2D-ARMA)」モデルを提案する。
短期予測のために,テンソルクラスタリングに基づくテンソル補完を行い,過度に単純化され精度が保証されるのを避けることを提案する。
論文 参考訳(メタデータ) (2020-04-23T08:30:00Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。