論文の概要: Semantic Layered Embedding Diffusion in Large Language Models for Multi-Contextual Consistency
- arxiv url: http://arxiv.org/abs/2501.15405v2
- Date: Tue, 25 Mar 2025 12:55:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:52:21.911885
- Title: Semantic Layered Embedding Diffusion in Large Language Models for Multi-Contextual Consistency
- Title(参考訳): 多条件一貫性のための大規模言語モデルにおける意味層埋め込み拡散
- Authors: Irin Kabakum, Thomas Montgomery, Daniel Ravenwood, Genevieve Harrington,
- Abstract要約: Semantic Layered Embedding Diffusion (SLED) メカニズムは、トランスフォーマーベースのアーキテクチャにおける階層的セマンティクスの表現を再定義する。
スペクトル解析に基づく多層拡散プロセスを導入することにより、大域的および局所的セマンティックコヒーレンスの間の複雑なバランスを実現する。
実験結果は、様々な領域で効果的に適応するメカニズムの能力を強調し、パープレキシティとBLEUスコアを著しく改善した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The Semantic Layered Embedding Diffusion (SLED) mechanism redefines the representation of hierarchical semantics within transformer-based architectures, enabling enhanced contextual consistency across a wide array of linguistic tasks. By introducing a multi-layered diffusion process grounded in spectral analysis, it achieves a complex balance between global and local semantic coherence. Experimental results demonstrate significant improvements in perplexity and BLEU scores, emphasizing the mechanism's ability to adapt effectively across diverse domains, including multilingual and cross-domain text generation. A rigorous mathematical framework underpins the embedding diffusion process, incorporating weighted adjacency matrices, kernel-based refinements, and dynamic layer-wise normalization. Error distribution analysis reveals that SLED addresses challenges in semantic alignment and coherence, outperforming baseline approaches across varied benchmarks. Scalability studies illustrate that its performance gains are maintained consistently across different model sizes, reflecting a practical balance between computational efficiency and linguistic precision. The implementation also achieves energy efficiency, reducing resource consumption during training and inference phases without compromising accuracy. Qualitative case studies further validate its adaptability to extended narratives and context-intensive scenarios, highlighting the mechanism's potential for real-world applications. SLED offers a different perspective on embedding design and its implications for advancing language modeling.
- Abstract(参考訳): Semantic Layered Embedding Diffusion (SLED) メカニズムは、トランスフォーマーベースのアーキテクチャにおける階層的セマンティクスの表現を再定義し、幅広い言語タスクのコンテキスト整合性を高める。
スペクトル解析に基づく多層拡散プロセスを導入することにより、大域的および局所的セマンティックコヒーレンスの間の複雑なバランスを実現する。
実験結果は、多言語テキスト生成やクロスドメインテキスト生成など、様々な領域で効果的に適応するメカニズムの能力を強調し、パープレキシティとBLEUスコアの大幅な改善を示した。
厳密な数学的枠組みは埋め込み拡散プロセスの基盤となり、重み付けされた隣接行列、カーネルベースの洗練、動的層ワイド正規化を取り入れている。
誤差分布解析により、SLEDはセマンティックアライメントとコヒーレンスにおける課題に対処し、様々なベンチマークにおけるベースラインアプローチよりも優れていることが明らかになった。
スケーラビリティの研究は、その性能向上が様々なモデルサイズで一貫して維持され、計算効率と言語精度の実践的なバランスを反映していることを示している。
この実装は、エネルギー効率も達成し、トレーニングや推論フェーズにおけるリソース消費を、精度を損なうことなく削減する。
定性的なケーススタディでは、拡張された物語や文脈集約的なシナリオへの適応性をさらに検証し、現実世界のアプリケーションに対するメカニズムの可能性を強調している。
SLEDは、埋め込み設計と言語モデリングの進歩に対するその意味について、異なる視点を提供する。
関連論文リスト
- Hierarchical Lexical Manifold Projection in Large Language Models: A Novel Mechanism for Multi-Scale Semantic Representation [0.0]
構造的階層的埋め込みをトランスフォーマーベースのアーキテクチャに統合することで、語彙表現に対する洗練されたアプローチが導入された。
トークンを構造化多様体にマッピングする射影機構は、改善された語彙アライメントを提供する。
埋め込みの洗練された階層構造は、語彙モデリングにおいてより大きな解釈可能性をもたらす。
論文 参考訳(メタデータ) (2025-02-08T00:49:32Z) - Latent Lexical Projection in Large Language Models: A Novel Approach to Implicit Representation Refinement [0.0]
ラテントレキシカル射影 (LLP) は、構造化された空間からラテント空間への変換を通じて、レキシカル表現を洗練するために導入された。
LLPは既存の言語モデルアーキテクチャに最適化されたプロジェクション機構を統合する。
評価は、パープレキシティの低下とBLEUスコアの上昇を示し、予測精度と流布率の改善を示唆している。
論文 参考訳(メタデータ) (2025-02-03T23:18:53Z) - Exploring Representation-Aligned Latent Space for Better Generation [86.45670422239317]
生成性能を改善するために,セマンティックな事前情報を統合するReaLSを導入する。
本研究では、ReaLSでトレーニングされたDETとSiTが、FID測定値の15%改善を実現することを示す。
拡張されたセマンティック潜在空間は、セグメンテーションや深さ推定のようなより知覚的な下流タスクを可能にする。
論文 参考訳(メタデータ) (2025-02-01T07:42:12Z) - Intrinsic Tensor Field Propagation in Large Language Models: A Novel Approach to Contextual Information Flow [0.0]
内在的場伝播は、様々な言語構造にわたる文脈的保持、依存性の解決、推論を改善する。
オープンソーストランスフォーマーベースのモデルで行った実験では、様々な言語構造にわたる文脈保持、依存関係の解決、推論において測定可能な改善が提供されている。
論文 参考訳(メタデータ) (2025-01-31T08:32:32Z) - Structural Embedding Projection for Contextual Large Language Model Inference [0.0]
構造化埋め込み変換は、言語モデル推論の効率性と一貫性を高めるための有望なアプローチを提供する。
構造埋め込み射影 (Structure Embedding Projection, SEP) の数学的定式化により、埋め込み空間は構造化された文脈関係を捉えることができる。
語彙の多様性に対するSEPの影響は、埋め込み修飾がモデルの語彙使用に影響を与えることを示唆している。
論文 参考訳(メタデータ) (2025-01-31T00:46:21Z) - Neural Contextual Reinforcement Framework for Logical Structure Language Generation [1.08272575635683]
このフレームワークはカスタム報酬関数と動的コンテキストアライメント機構を統合している。
論理構造やセマンティックフローに対する人間の期待と密接に一致した出力を生成する。
さまざまなモデルサイズにわたるノイズの多い入力データとスケーラビリティを扱う上で、堅牢性を示す。
論文 参考訳(メタデータ) (2025-01-20T11:34:28Z) - Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
生成的トレーニングにより、視覚言語モデル(VLM)は様々な複雑なタスクに取り組むことができる。
CLIPのようなモデルで実証された差別的トレーニングは、ゼロショットイメージテキストの分類と検索に優れています。
本稿では,両パラダイムの強みを統合する統一的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-01T01:51:31Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMAは、視覚的およびテキスト的エンコーディングを効率的に融合するために設計された軽量なクロスプラットフォームモジュールである。
EMMAは複数のタスクのパフォーマンスを最大9.3%向上させ、幻覚に対する堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-02T23:00:31Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
変分オートエンコーダ(VAE)は、エンドツーエンドの表現学習において必須のツールである。
VAEは強い自己回帰デコーダで潜伏変数を無視する傾向がある。
よりコンパクトな潜在空間において暗黙的な潜在特徴マッチングを強制する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2020-04-22T14:41:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。